hidimstat.reid¶
- hidimstat.reid(X, y, eps=0.01, tol=0.0001, max_iter=10000.0, n_jobs=1, seed=0)¶
- Estimation of noise standard deviation using Reid procedure - Parameters
- Xndarray, shape (n_samples, n_features)
- Data. 
- yndarray, shape (n_samples,)
- Target. 
- eps: float, optional (default=1e-2)
- Length of the cross-validation path. eps=1e-2 means that alpha_min / alpha_max = 1e-2. 
- tolfloat, optional (default=1e-4)
- The tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol. 
- max_iterint, optional (default=1e4)
- The maximum number of iterations. 
- n_jobsint or None, optional (default=1)
- Number of CPUs to use during the cross validation. 
- seed: int, optional (default=0)
- Seed passed in the KFold object which is used to cross-validate LassoCV. This seed controls the partitioning randomness. 
 
- Returns
- sigma_hatfloat
- Estimated noise standard deviation. 
- beta_hatarray, shape (n_features,)
- Estimated parameter vector. 
 
 - References - 1
- Reid, S., Tibshirani, R., & Friedman, J. (2016). A study of error variance estimation in lasso regression. Statistica Sinica, 35-67.