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Abstract5

We consider the inference problem for high-dimensional linear models, when co-6

variates have an underlying spatial organization reflected in their correlation. A7

typical example of such a setting is high-resolution imaging, in which neighboring8

pixels are usually very similar. Accurate point and confidence intervals estimation9

is not possible in this context with many more covariates than samples, furthermore10

with high correlation between covariates. This calls for a reformulation of the sta-11

tistical inference problem, that takes into account the underlying spatial structure:12

if covariates are locally correlated, it is acceptable to detect them up to a given13

spatial uncertainty. We thus propose to rely on the δ-FWER, that is the probabil-14

ity of making a false discovery at a distance greater than δ from any true positive.15

With this target measure in mind, we study the properties of ensembled clustered16

inference algorithms which combine three techniques: spatially constrained cluster-17

ing, statistical inference, and ensembling to aggregate several clustered inference18

solutions. We show that ensembled clustered inference algorithms control the δ-19

FWER under standard assumptions for δ equal to the largest cluster diameter. We20

complement the theoretical analysis with empirical results, demonstrating accurate21

δ-FWER control and decent power achieved by such inference algorithms.22

Keywords: Clustering; High-dimension; Linear model; Spatial tolerance; Statistical in-23

ference; Structured data; Support recovery.24
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1 Introduction25

High-dimensional setting. High-dimensional regression corresponds to a setting
where the number of covariates (or features) p exceeds the number of samples n. It no-
tably occurs when searching for conditional associations among some high-dimensional
observations and some outcome of interest: the target. Typical examples of the high-
dimensional setting include inference problems on high-resolution images, where one aims
at pixel- or voxel-level analysis, e.g., in neuroimaging [Norman et al., 2006, De Martino
et al., 2008], astronomy [Richards et al., 2009], but also in other fields where covariates
display a spatial structure e.g., in genomics [Balding, 2006, Dehman et al., 2015]. In all
these examples, it actually turns out that not only n < p but even n� p and the covari-
ates are spatially structured because of the physics of the problem or the measurements
process. Because such high-dimensional data lead to high-variance results, probing sta-
tistical significance is important to give a level of confidence in the reported association.
For this reason, the present analysis departs from traditional sparse modeling methods
such as the Lasso [Tibshirani, 1996], that simply aim at selecting a good set of predictive
covariates without considering statistical significance. In this context, a first approach
is to consider the multivariate linear model:

y = Xβ∗ + ε ,

where the target is denoted by y ∈ Rn, the design matrix by X ∈ Rn×p, the parameter26

vector by β∗ ∈ Rp and the random error vector by ε ∈ Rn. The aim is to infer β∗, with27

statistical guarantees on the estimate, in particular regarding the support, i.e., the set28

of covariates with non-zero importance.29

Statistical inference on individual parameters. In high-dimensional settings,30

standard statistical inference methodology does not apply, but numerous methods have31

recently been proposed to recover the non-zero parameters of β∗ with statistical guaran-32

tees. Many methods rely on resampling: bootstrap procedures [Bach, 2008, Chatterjee33

and Lahiri, 2011, Liu and Yu, 2013], perturbation resampling-based procedures [Min-34

nier et al., 2011], stability selection procedures [Meinshausen and Bühlmann, 2010] and35

randomized sample splitting [Wasserman and Roeder, 2009, Meinshausen et al., 2009].36

All of these approaches suffer from limited power. Contrarily to the screening/inference37

procedure, post-selection inference procedures generally merge the screening and infer-38

ence steps into one and then use all the samples [Berk et al., 2013, Lockhart et al., 2014,39

Lee et al., 2016, Tibshirani et al., 2016], resulting in potentially more powerful tests than40

sample splitting. Yet, these approaches do not scale well with large p. Another family of41

methods rely on debiasing procedures: the most prominent examples are corrected ridge42

[Bühlmann, 2013] and desparsified Lasso [Zhang and Zhang, 2014, van de Geer et al.,43

2014, Javanmard and Montanari, 2014] which is an active area of research [Javanmard44

and Montanari, 2018, Bellec and Zhang, 2019, Celentano et al., 2020]. Additionally,45

knockoff filters [Barber and Candès, 2015, Candès et al., 2018] consist in creating noisy46

“fake” copies of the original variables, and checking which original variables are selected47
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prior to the fake ones. Finally, a general framework for statistical inference in sparse48

high-dimensional models has been proposed recently [Ning and Liu, 2017].49

Failure of existing statistical inference methods. In practice, in the n� p setting50

we consider, the previous methods are not well adapted as they are often powerless or51

computationally intractable. In particular, the number of predictive parameters (i.e., the52

support size) denoted s(β∗) can be greater than the number of samples even in the53

sparse setting, where s(β∗) � p. There is an underlying identifiability problem: in54

general, one cannot retrieve all predictive parameters, as highlighted e.g., in Wainwright55

[2009]. Beyond the fact that statistical inference is impossible when p� n, the problem56

is aggravated by the following three effects. First, as outlined above, dense covariate57

sampling leads to high values for p and induces high correlation among covariates, further58

challenging the conditions for recovery, as shown in Wainwright [2009]. Second, when59

testing for several multiple hypothesis, the correction cost is heavy [Dunn, 1961, Westfall60

and Young, 1993, Benjamini and Hochberg, 1995]; for example with Bonferroni correction61

[Dunn, 1961], p-values are corrected by a factor p when testing every covariate. This62

make this type of inference methods powerless in our settings (see Fig. 3 for instance).63

Third, the above approaches are at least quadratic or cubic in the support size, hence64

become prohibitive whenever both p and n are large.65

Combining clustering and inference. Nevertheless, in these settings, variables of-66

ten reflect some underlying spatial structure, such as smoothness. For example, in med-67

ical imaging, an image has a 3D structure and a given voxel is highly correlated with68

neighboring voxels; in genomics, there exist blocks of Single Nucleotide Polymorphisms69

(SNPs) that tend to be jointly predictive or not. Hence, β∗ can in general be assumed70

to share the same structure: among several highly correlated covariates, asserting that71

only one is important to predict the target seems meaningless, if not misleading.72

A computationally attractive solution that alleviates high dimensionality is to group73

correlated neighboring covariates. This step can be understood as a design compression:74

it produces a closely related, yet reduced version of the original problem (see e.g., Park75

et al. [2006], Varoquaux et al. [2012], Hoyos-Idrobo et al. [2018]). Inference combined76

with a fixed clustering has been proposed by Bühlmann et al. [2013] and can overcome77

the dimensionality issue, yet this study does not provide procedures that derive cluster-78

wise confidence intervals or p-values. Moreover, in most cases groups (or clusters) are not79

pre-determined nor easily identifiable from data, and their estimation simply represents80

a local optimum among a huge, non-convex space of solutions. It is thus problematic to81

base inference upon such an arbitrary data representation. Inspired by this dimension82

reduction approach, we have proposed [Chevalier et al., 2018] the ensemble of clustered83

desparsified Lasso (EnCluDL) procedure that exhibits strong empirical performances84

[Chevalier et al., 2021] in terms of support recovery even when p � n. EnCluDL is85

an ensembled clustered inference algorithm, i.e., it combines a spatially constrained86

clustering procedure that reduces the problem dimension, an inference procedure that87

performs statistical inference at the cluster level, and an ensembling method that ag-88
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gregates several cluster-level solutions. Concerning the inference step, the desparsified89

Lasso [Zhang and Zhang, 2014, van de Geer et al., 2014, Javanmard and Montanari,90

2014] was preferred over other high-dimensional statistical inference procedures based91

on the comparative study of Dezeure et al. [2015] and on the research activity around92

it [Dezeure et al., 2017, Javanmard and Montanari, 2018, Bellec and Zhang, 2019, Ce-93

lentano et al., 2020]; however, it is be possible to use another inference procedure that94

produces a p-value family controlling the classical FWER. By contrast, we did not con-95

sider the popular knockoff procedure [Barber and Candès, 2015, Candès et al., 2018],96

that does not produce p-values and does not control the family-wise error rate (FWER).97

However, an extension of the knockoffs to FWER-type control was proposed by Janson98

and Su [2016]. It does not control the standard FWER but another relaxed version of the99

FWER called k-FWER. As it is a relevant alternative to ensembled clustered inference100

algorithms, we have included it in our empirical comparison (see Section 5). In Nguyen101

et al. [2020], a variant of the knockoffs is proposed to control the FWER, but it does not102

handle large-p problems. Another extension that produces p-value, called conditional103

randomization test, has been presented in Candès et al. [2018], but its computational104

cost is prohibitive. Additionally, Meinshausen [2015] provides “group-bound” confidence105

intervals, corresponding to confidence intervals on the `1-norm of several parameters,106

without making further assumptions on the design matrix. However, this method is107

known to be conservative in practice [Mitra and Zhang, 2016, Javanmard and Monta-108

nari, 2018]. Finally, hierarchical testing [Mandozzi and Bühlmann, 2016, Blanchard and109

Geman, 2005, Meinshausen, 2008] also leverages this clustering/inference combination110

but in a different way. Their approach consists in performing significance tests along the111

tree of a hierarchical clustering algorithm starting from the root node and descending112

subsequently into children of rejected nodes. This procedure has the drawback of being113

constrained by the clustering tree, which is often not available, thus replaced by some114

noisy estimate.115

Contributions. Producing a cluster-wise inference is not completely satisfactory as116

it relies on an arbitrary clustering choice. Instead, we look for methods that derive117

covariate-wise statistics enabling support identification with a spatially relaxed false118

detection control. In that regard, our first contribution is to present a generalization119

of the FWER called δ-FWER, that takes into account a spatial tolerance of magnitude120

δ for the false discoveries. Then, our main contribution is to prove that ensembled121

clustered inference algorithms control the δ-FWER under reasonable assumptions for a122

given tolerance parameter δ. Finally, we apply the ensembled clustered inference scheme123

to the desparsified Lasso leading to the EnCluDL algorithm and conduct an empirical124

study: we show that EnCluDL exhibits a good statistical power in comparison with125

alternative procedures and we verify that it displays the expected δ-FWER control.126

Notation. Throughout the remainder of this article, for any p ∈ N∗, we write [p] for127

the set {1, . . . , p}. For a vector β, βj refers to its j-th coordinate. For a matrix X, Xi,.128

refers to the i-th row and X.,j to the j-th column and Xi,j refers to the element in the129
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i-th row and j-th column.130

2 Model and data assumptions131

2.1 Generative models of high-dimensional data: random fields132

In the setting that we consider, we assume that the covariates come with a natural rep-133

resentation in a discretized metric space, generally the discretized 2D or 3D Euclidean134

space. In such settings, discrete random fields are convenient to model the random vari-135

ables representing the covariates. Indeed, denoting by X = (Xi,j)i∈[n],j∈[p] the random136

design matrix, where n is the number of samples and p the number of covariates, the137

rows (Xi,.)i∈[n] are sampled from a random field defined on a discrete domain.138

2.2 Gaussian random design model and high dimensional settings139

We assume that the covariates are independent and identically distributed and follow
a centered Gaussian distribution, i.e., for all i ∈ [n], Xi,. ∼ N (0p,Σ) where Σ is the
covariance matrix of the covariates. Our aim is to derive confidence bounds or p-values
on the coefficients of the parameter vector denoted by β∗, under the Gaussian linear
model:

y = Xβ∗ + ε , (1)

where y ∈ Rn is the target, X ∈ Rn×p is the (random) design matrix, β∗ ∈ Rp is the140

vector or parameters, and ε ∼ N (0, σ2
εIn) is the noise vector with standard deviation141

σε > 0. We make the assumption that ε is independent of X.142

2.3 Data structure143

Since the covariates have a natural representation in a metric space, we assume that the144

spatial distances between covariates are known. With a slight abuse of notation, the145

distance between covariates j and k is denoted by d(j, k) for (j, k) ∈ [p] × [p] and the146

correlation between covariates j and k is given by Cor(X.,j ,X.,k) = Σj,k/
√

Σj,jΣk,k. We147

now introduce a key structural assumption: two covariates at a spatial distance smaller148

than δ are positively correlated.149

Assumption 2.1. The covariates verify the spatial homogeneity assumption with dis-150

tance parameter δ > 0 if, for all (j, k) ∈ [p]× [p], d(j, k) ≤ δ implies that Σj,k ≥ 0.151

Under model (1), each coordinate of the parameter vector β∗ links one covariate to152

the target. Then, β∗ has the same underlying organization as the covariates and is also153

called weight map in these settings. Defining its support as S(β∗) = {j ∈ [p] : β∗j 6= 0}154

and its cardinal as s(β∗) = |S(β∗)|, we assume that the true model is sparse, meaning155

that β∗ has a small number of non-zero entries, i.e., s(β∗) � p. The complementary156

of S(β∗) in [p] is called the null region and is denoted by N(β∗), i.e., N(β∗) = {j ∈157
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[p] : β∗j = 0}. Additionally to the sparse assumption, we assume that β∗ is (spatially)158

smooth. To reflect sparsity and smoothness, we introduce another key assumption:159

weights associated with close enough covariates share the same sign, zero being both160

positive and negative.161

Assumption 2.2. The weight vector β∗ verifies the sparse-smooth assumption with162

distance parameter δ > 0 if, for all (j, k) ∈ [p]× [p], d(j, k) ≤ δ implies that sign(β∗j ) =163

sign(β∗k).164

Equivalently, the sparse-smooth assumption with parameter δ holds if the distance165

between the two closest weights of opposite sign is larger than δ. In Fig. 2-(a), we give166

an example of a weight map verifying the sparse-smooth assumption with δ = 2.167

3 Statistical control with spatial tolerance168

Under the spatial assumption we have discussed, discoveries that are closer than δ from169

the true support are not considered as false discoveries: inference at a resolution finer170

than δ might be unrealistic. This means that δ can be interpreted as a tolerance param-171

eter on the (spatial) support we aim at recovering. Then, we introduce a new metric172

closely related to the FWER that takes into account spatial tolerance and we call it δ-173

family wise error rate (δ-FWER). A similar extension of the false discovery rate (FDR)174

has been introduced by Cheng et al. [2020], Nguyen et al. [2019], Gimenez and Zou [2019],175

but, to the best of our knowledge, this has not been considered yet for the FWER. In176

the following, we consider a general estimator β̂ that comes with p-values, testing the177

nullity of the corresponding parameters, denoted by p̂ = (p̂j)j∈[p]. Also, we denote by178

S(β̂) ⊂ [p] a general estimate of the support S(β∗) derived from the estimator β̂.179

Definition 3.1 (δ-null hypothesis). For all j ∈ [p], the δ-null hypothesis for the j-th
covariates, Hδ

0(j), states that all other covariates at distance less than δ have a zero
weight in the true model (1); the alternative hypothesis is denoted Hδ

1(j):

Hδ
0(j) : “for all k ∈ [p] such that d(j, k) ≤ δ, β∗k = 0” ,

Hδ
1(j) : “there exists k ∈ [p] such that d(j, k) ≤ δ and β∗k 6= 0” .

Thus, we say that a δ-type 1 error is made if a null covariate j ∈ [p] is selected,180

i.e., j ∈ S(β̂), while Hδ
0(j) holds true. Taking δ = 0 recovers the usual null-hypothesis181

H0(j) : “β∗j = 0” and usual type 1 error.182

Definition 3.2 (Control of the δ-type 1 error). The p-value related to the j-th covariate
denoted by p̂j controls the δ-type 1 error if, under Hδ

0(j), for all α ∈ (0, 1), we have:

P(p̂j ≤ α) ≤ α ,

where P is the probability distribution with respect to the random dataset of observations183

(X,y).184
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Definition 3.3 (δ-null region). The set of indexes of covariates verifying the δ-null
hypothesis is called the δ-null region and is denoted by N δ(β∗) (or simply N δ):

N δ(β∗) = {j ∈ [p] : for all k ∈ [p], d(j, k) ≤ δ implies that β∗k = 0} .

When δ = 0 the δ-null region is simply the null region : N0(β∗) = N(β∗). We also185

point out the nested property of δ-null regions with respect to δ: for 0 ≤ δ1 ≤ δ2 we186

have N δ2(β∗) ⊆ N δ1(β∗) ⊆ N(β∗) (see Fig. 2-(d) for an example of δ-null region).187

Definition 3.4 (Rejection region). Given a family of p-values p̂ = (p̂j)j∈[p] and a thresh-
old α ∈ (0, 1), the rejection region, Rα(p̂), is the set of indexes having a p-value lower
than α:

Rα(p̂) = {j ∈ [p] : p̂j ≤ α} .

Definition 3.5 (δ-type 1 error region). Given a family of p-values p̂ = (p̂j)j∈[p] and a
threshold α ∈ (0, 1), the δ-type 1 error region at level α is E δ

α , the set of indexes belonging
both to the δ-null region and to the rejection region at level α. We also refer to this region
as the erroneous rejection region at level α with tolerance δ:

E δ
α(p̂) = N δ ∩Rα(p̂) .

When δ = 0 the δ-type 1 error region recovers the type 1 error region which is188

denoted by Eα(p̂). Again, one can verify a nested property: for 0 ≤ δ1 ≤ δ2 we have189

E δ2
α (p̂) ⊆ E δ1

α (p̂) ⊆ Eα(p̂).190

Definition 3.6 (δ-family wise error rate). Given a family of p-values p̂ = (p̂j)j∈[p] and
a threshold α ∈ (0, 1), the δ-FWER at level α with respect to the family p̂, denoted
δ-FWERα(p̂), is the probability that the δ-type 1 error region at level α is not empty:

δ-FWERα(p̂) = P(|E δ
α(p̂)| ≥ 1) = P(min

j∈Nδ
p̂j ≤ α) .

Definition 3.7 (δ-FWER control). We say that the family of p-values p̂ = (p̂j)j∈[p]
controls the δ-FWER if, for all α ∈ (0, 1):

δ-FWERα(p̂) ≤ α .

When δ = 0 the δ-FWER is the usual FWER. Additionally, for 0 ≤ δ1 ≤ δ2, one can191

verify that δ2-FWERα(p̂) ≤ δ1-FWERα(p̂) ≤ FWERα(p̂). Thus, δ-FWER control is a192

weaker property than usual FWER control.193

4 δ-FWER control with clustered inference algorithms194

4.1 Clustered inference algorithms195

A clustered inference algorithm consists in partitioning the covariates into groups (or196

clusters) before applying a statistical inference procedure. In Sec. 4.1, we describe a197
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standard clustered inference algorithm that produces a (corrected) p-value family on the198

parameters of the model (1). In this algorithm, in addition to the observations (X,y), we199

take as input the transformation matrix A ∈ Rp×C which maps and averages covariates200

into C clusters. The statistical_inference function corresponds to a given statistical201

inference procedure that takes as inputs the clustered data Z and the target y and202

produces valid p-values for every cluster. If C < n, least squares are suitable, otherwise,203

procedures such as multi-sample split [Wasserman and Roeder, 2009, Meinshausen et al.,204

2009], corrected ridge [Bühlmann, 2013] or desparsified Lasso [Zhang and Zhang, 2014,205

van de Geer et al., 2014, Javanmard and Montanari, 2014] might be relevant whenever206

their assumptions are verified. Then, the computed p-values are corrected for multiple207

testing by multiplying by a factor C. Finally, covariate-wise p-values are inherited from208

the corresponding cluster-wise p-values.209

Algorithm 1 Clustered inference
input : X ∈ Rn×p,y ∈ Rn,A ∈ Rp×C

Z = XA // compressed design matrix

p̂G = statistical_inference(Z,y) // uncorrected cluster-wise p-values

q̂G = C × p̂G // corrected cluster-wise p-values

for j = 1, . . . , p do
q̂j = q̂Gc if j in cluster c // corrected covariate-wise p-values

return q̂ = (q̂j)j∈[p] // family of corrected covariate-wise p-values

Algorithm 2 Ensembled clustered inference
input : X ∈ Rn×p,y ∈ Rn

param : C,B
for b = 1, . . . , B do

X(b) = sampling(X) // sampling rows of X
A(b) = clustering(q,X(b)) // transformation matrix

q̂(b) = clustered_inference(X,y,A(b)) // families of corr. covariate-wise p-val.

for j = 1, . . . , p do
q̂j = ensembling({q̂(b)

j , b ∈ [B]}) // aggregated corrected covariate-wise p-values

return q̂ = (q̂j)j∈[p] // family of aggregated corrected covariate-wise p-values

Ensembled clustered inference algorithms correspond to the ensembling of several210

clustered inference solutions for different choice of clusterings using the p-value aggre-211

gation proposed by Meinshausen et al. [2009]. In Sec. 4.1, we give a standard ensembled212

clustered inference algorithm that produces a (corrected) p-value family on the parame-213

ters of the model (1). In this algorithm, the sampling function corresponds to a subsam-214

pling of the data, i.e., a subsampling of the rows of X. The clustering function derives215

a choice of clustering in C clusters, it produces a transformation matrix A(b) ∈ Rp×C216
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that should vary for each bootstrap b ∈ [B] since the subsampled data X(b) varies. Once217

the clustering inference steps are completed, the ensembling function aggregates the B218

(corrected) p-value families into a single one.219

Fig. 1 can help the reader to better understand the organization of the next sections,220

aiming eventually at establishing the δ-FWER control property of the clustered inference221

and ensembled clustered inference algorithms.222

original
model

Sec. 4.2 compressed
    model

Sec. 4.4

cluster-wise
   p-values

Sec. 4.3

covariate-wise
   p-values

Sec. 4.5

 aggregated
covariate-wise
   p-values

Sec. 4.6

Figure 1: Organization of Section 4.

4.2 Compressed representation223

The motivation for using groups of covariates that are spatially concentrated is to reduce
the dimension while preserving large-scale data structure. The number of groups is
denoted by C < p and, for r ∈ [q], we denote by Gr the r-th group. The collection of
all the groups is denoted by G = {G1, G2, . . . , GC} and forms a partition of [p]. Every
group representative variable is defined by the average of the covariates it contains.
Then, denoting by Z ∈ Rn×C the compressed random design matrix that contains the
group representative variables in columns and, without loss of generality, assuming a
suitable ordering of the columns of X, dimension reduction can be written:

Z = XA , (2)

where A ∈ Rp×q is the transformation matrix defined by:

A =


α1 α1 0 0 . . . 0 0

0 0 α2 α2 . . . 0 0
...

... . . . ...
0 0 0 0 . . . αC αC

 ,

where αc = 1/|Gc| for all c ∈ [C]. Consequently, the distribution of the i-th row of Z is
given by Zi,. ∼ Nq(0,Υ), where Υ = A>ΣA. The correlation between the groups r ∈ [q]
and l ∈ [q] is given by Cor(Z.,r,Z.,l) = Υr,l/

√
Υr,rΥl,l. As mentioned in Bühlmann et al.

[2013], because of the Gaussian assumption in (1), we have the following compressed
representation:

y = Zθ∗ + η , (3)

where θ∗ ∈ Rq, η ∼ N (0, σ2
ηIn), ση ≥ σε > 0 and η is independent of Z.224
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Remark 4.1. Dimension reduction is not the unique desirable effect of clustering with225

regards to statistical inference. Indeed, this clustering-based design compression also226

generally improves the conditioning of the problem. Assumptions needed for valid statis-227

tical inference are thus more likely to be met. For more details about this conditioning228

enhancement, the reader may refer to Bühlmann et al. [2013].229

4.3 Properties of the compressed model weights230

We now give a property of the weights of the compressed problem which is a consequence231

of Bühlmann et al. [2013, Proposition 4.3].232

Proposition 4.1. Considering the Gaussian linear model in (1) and assuming:

(i) for all c ∈ [C], for all (j, k) ∈ (Gc)2, Σj,k ≥ 0 ,

(ii) for all c ∈ [C], for all c′ ∈ [C] \ {c}, Υc,c′ = 0 ,

(iii) for all c ∈ [C],
(
β∗j ≥ 0 for all j ∈ Gc

)
or
(
β∗j ≤ 0 for all j ∈ Gc

)
,

then, in the compressed representation (3), for c ∈ [C], θ∗c 6= 0 if and only if there exists233

j ∈ Gc such that β∗j 6= 0. If such an index j exists then sign(θ∗r) = sign(β∗j ).234

Proof. See Supplement E.1.235

Assumption (i) states that the covariates in a group are all positively correlated. Let236

us define the group diameter (or cluster diameter) of Gc by the distance that separates237

its two most distant covariates, i.e., Diam(Gc) = max{d(j, k) : (j, k) ∈ (Gc)2} and the238

clustering diameter of G by the largest group diameter, i.e., Diam(G) = max{Diam(Gc) :239

c ∈ [C]}. In Fig. 2-(b), we propose a clustering of the initial weight map in Fig. 2-(a) for240

which the clustering diameter is equal to 2 for the `1 distance. Assumption (i) notably241

holds when Diam(G) ≤ δ under the spatial homogeneity assumption (Ass. 2.1) with pa-242

rameter δ. Assumption (ii) assumes independence of the groups. A sufficient condition243

is when the covariates covariance matrix Σ is block diagonal, with blocks coinciding244

with the group structure; i.e., assumption (ii) holds when covariates of different groups245

are independent. In practice, this assumption may be unmet, and we relax it in Sup-246

plement B. Assumption (iii) states that all the weights in a group share the same sign.247

This is notably the case when the clustering diameter is smaller than δ and the weight248

map satisfies the sparse-smooth assumption (Ass. 2.2) with parameter δ. For instance,249

a clustering-based compressed representation of the weight map in Fig. 2-(a) is given in250

Fig. 2-(c).251

4.4 Statistical inference on the compressed model252

To perform the statistical inference on the compressed problem (3), we could consider
any statistical inference procedure that produces cluster-wise p-values p̂G = (p̂Gc )c∈[C],
given a choice of clustering G, that control the type 1 error. More precisely, for any
c ∈ [C], under H0(Gc), i.e., the null hypothesis which states that θ∗c is equal to zero
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in the  -null region

(d)  

Figure (d) only:

Figure (c) only:

Figures (a), (b), (d) only:

Clustered inference

Figure 2: Clustered inference mechanism on 2D-spatially structured data. Item a: Ex-
ample of weight map with a 2D-structure. Voxels represent covariates, with blue (resp.
red) corresponding to negative (resp. positive) weights; others are null weights. Item b:
Arbitrary choice of spatially constrained clustering with a diameter of δ = 2 units for
the `1-distance. Rectangles delimited by black lines represent clusters that contain only
zero-weight covariates. Blue (resp. red) rectangles refer to clusters that contain negative-
weight (resp. positive) covariates. Item c: Compressed model weights: under the as-
sumptions of Prop. 4.1, the cluster weights share the same signs as the covariate weights
they contain. Blue (resp. red) rectangles correspond to negative-weight (resp. positive-
weights) clusters. Item d: The grey area corresponds to the δ-null region (δ = 2). Under
the same assumptions, the non-zero weight groups have no intersection with the δ-null
region.

in the compressed model, we assume that the p-value associated with the c-th cluster
verifies:

P(p̂Gc ≤ α) ≤ α . (4)
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To correct for multiple comparisons, we consider Bonferroni correction [Dunn, 1961]
which is a conservative procedure but has the advantage of being valid without any
additional assumptions. Furthermore, here the correction factor is only equal to the
number of groups, not the number of covariates. Then, the family of corrected cluster-
wise p-values q̂G = (q̂Gc )c∈[C] is defined by:

q̂Gc = min{1, C × p̂Gc } . (5)

Let us denote by NG(θ∗) (or simply NG) the null region in the compressed problem for
a given choice of clustering G, i.e., NG(θ∗) = {c ∈ [C] : θ∗c = 0}. Then, for all α ∈ (0, 1):

FWERα(q̂G) = P( min
c∈NG

q̂Gc ≤ α) ≤ α . (6)

This means that the cluster-wise p-value family q̂G controls FWER.253

4.5 De-grouping254

Given the families of cluster-wise p-values p̂G and corrected p-values q̂G as defined in
(10) and (5), our next aim is to derive families of p-values and corrected p-values related
to the covariates of the original problem. To construct these families, we simply set
the (corrected) p-value of the j-th covariate to be equal to the (corrected) p-value of its
corresponding group:

for all j ∈ [p], p̂j =
∑
c∈[C]

1{j∈Gc} p̂
G
c ,

for all j ∈ [p], q̂j =
∑
c∈[C]

1{j∈Gc} q̂
G
c .

(7)

Proposition 4.2. Under the assumptions of Prop. 4.1 and assuming that the clustering255

diameter is smaller than δ, then:256

(i) elements of the family p̂ defined in (7) control the δ-type 1 error:

for all j ∈ N δ, for all α ∈ (0, 1), P(p̂j ≤ α) ≤ α ,

(ii) the family q̂ defined in (7) controls the δ-FWER:

for all α ∈ (0, 1), P(min
j∈Nδ

(q̂j) ≤ α) ≤ α .

Proof. See Supplement E.2.257

The previous de-grouping properties can be seen in Fig. 2-(d). Roughly, since all258

the clusters that intersect the δ-null region have low p-value with low probability, one259

can conclude that all the covariates of the δ-null region also have low p-value with low260

probability.261
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4.6 Ensembling262

Let us consider B families of corrected p-values that control the δ-FWER. For any263

b ∈ [B], we denote by q̂(b) the b-th family of corrected p-values. Then, we show that264

the ensembling method proposed in Meinshausen et al. [2009] yields a family that also265

enforces δ-FWER control.266

Proposition 4.3. Assume that, for b ∈ [B], the p-value families q̂(b) control the δ-
FWER. Then, for any γ ∈ (0, 1), the ensembled p-value family q̃(γ) defined by:

for all j ∈ [p], q̃j(γ) = min

1, γ-quantile

 q̂
(b)
j

γ
: b ∈ [B]


 , (8)

controls the δ-FWER.267

Proof. See Supplement E.3.268

4.7 δ-FWER control269

We can now state our main result: the clustered inference and ensembled clustered270

inference algorithms control the δ-FWER.271

Theorem 4.1. Assume the model given in (1) and that the data structure assumptions,272

Ass. 2.1 and Ass. 2.2, are satisfied for a distance parameter larger than δ. Assume273

that all the clusterings considered have a diameter smaller than δ. Assume that the274

uncorrelated cluster assumption, i.e., assumption (ii) of Prop. 4.1, is verified for each275

clustering and further assume that the statistical inference performed on the compressed276

model (3) is valid, i.e., (4) holds. Then, the p-value family obtained from the clustered277

inference algorithm controls the δ-FWER. Additionally, the p-value family derived by the278

ensembled clustered inference algorithm controls the δ-FWER.279

Proof. See Supplement E.4.280

Remark 4.2. When the type 1 error control offered by the statistical inference proce-281

dure is only asymptotic, the result stated by Theorem 4.1 remains true asymptotically.282

This is notably the case when using desparsified Lasso: under the assumptions of Theo-283

rem 4.1 and the assumptions specific to desparsified Lasso (cf. Supplement A), ensemble284

of clustered desparsified Lasso (EnCluDL) controls the δ-FWER asymptotically.285

5 Numerical Simulations286

5.1 CluDL and EnCluDL287

For testing the (ensembled) clustered inference algorithms, we have decided to make288

the inference step using the desparsified Lasso [Zhang and Zhang, 2014, van de Geer289

et al., 2014, Javanmard and Montanari, 2014] leading to the clustered desparsified Lasso290
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(CluDL) and the ensemble of clustered desparsified Lasso (EnCluDL) algorithms that291

were first presented in Chevalier et al. [2018].292

In Supplement A, we detail the assumptions and refinements that occur when choos-293

ing the desparsified Lasso to perform the statistical inference step. A notable difference294

is the fact that all the results becomes asymptotic. In Supplement C, we present a295

diagram illustrating the mechanism of EnCluDL and analyse its numerical complexity.296

5.2 2D Simulation297

We run a series of simulations on 2D data in order to give empirical evidence of the298

theoretical properties of CluDL and EnCluDL and compare their recovery properties299

with two other procedures. For an easier visualization of the results, we consider one300

central scenario, whose parameters are written in bold in the following of this section,301

with several variations, changing only one parameter at a time.302

In all these simulations, the feature space considered is a 2D square with edge length303

H = 40 leading to p = H2 = 1 600 covariates, with a sample size n ∈ {50,100, 200, 400}.304

To construct β∗, we define a 2D weight map β̃∗ with four active regions (as illustrated in305

Fig. 3) and then flatten β̃∗ to a vector β∗ of size p. Each active region is a square of width306

h ∈ {2,4, 6, 8}, leading to a size of support of 1%, 4%, 9% or 16%. To construct the307

design matrix, we first build a 2D data matrix X̃ by drawing p random normal vectors308

of size n that are spatially smoothed with a 2D Gaussian filter to create a correlation309

structure related to the covariates’ spatial organization. The same flattening process as310

before is used to get the design matrix X ∈ Rn×p. The intensity of the spatial smoothing311

is adjusted to achieve a correlation between two adjacent covariates (local correlation)312

of ρ ∈ {0.5,0.75, 0.9, 0.95}. We also set the noise standard deviation σε ∈ {1,2, 3, 4},313

which corresponds to a signal to noise ratio (SNR) SNRy ∈ {6.5,3.5, 2.2, 1.5}, where the314

SNR is defined by SNRy = ‖Xβ∗‖2/‖ε‖2. For each scenario, we run 100 simulations315

to derive meaningful statistics. A Python implementation of the simulations and proce-316

dures presented in this paper is available on https://github.com/ja-che/hidimstat.317

Regarding the clustering step in CluDL and EnCluDL, we used a spatially constrained318

agglomerative clustering algorithm with Ward criterion. This algorithm is popular in319

many applications [Varoquaux et al., 2012, Dehman et al., 2015], as it tends to create320

compact, balanced clusters. Since the optimal number of clusters C is unknown a priori,321

we have tested several values C ∈ [100; 400]. A smaller C generally improves recovery,322

but entails a higher spatial tolerance. Following theoretical considerations, we compute323

the largest cluster diameter for every value of C and set δ to this value. We obtained the324

couples (C, δ) ∈ {(100, 8), (200, 6), (300, 5), (400, 4)}. The tolerance region is represented325

in Fig. 3 for δ = 6. Concerning EnCluDL, we took a number of bootstraps B equal to326

25 as we observed that it was sufficient to benefit from most of the effect of clustering327

randomization.328
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5.3 Alternative methods329

We compare the recovering properties of CluDL and EnCluDL with two other proce-330

dures: desparsified Lasso and knockoffs. Contrarily to CluDL and EnCluDL, none of331

these includes a compression step. The version of the desparsified Lasso we have tested332

is the one presented in van de Geer et al. [2014], that outputs p-values. Using Bonferroni333

correction it controls the classical FWER at any desired rate. The original version of334

knockoffs [Barber and Candès, 2015, Candès et al., 2018] only controls the false discov-335

ery rate (FDR) which is a weaker control than the classical FWER. Yet Janson and Su336

[2016] modifies the covariate selection process leading to a procedure that controls the337

k-FWER, i.e., the probability of making at least k false discoveries. We tested this last338

extension of knockoffs. Depending on the nominal rate at which we want to control the339

k-FWER, the choice of k is not arbitrary. More precisely, if we want a k-FWER control340

at 10%, we need to tolerate k = 4 at least, otherwise the estimated support would always341

be empty.342

Since k-FWER and δ-FWER controls are both weaker than the usual FWER control343

whenever k > 1 and δ > 0, one can expect desparsified Lasso to be less powerful than344

knockoffs, CluDL and EnCluDL. Besides, there is no relation between k-FWER and345

δ-FWER controls when k > 1 and δ > 0, hence it is not possible to establish which one346

is less prohibitive for support recovery. However, when data are spatially structured,347

δ-FWER control might be more relevant since it controls the very undesirable far-from-348

support false discoveries.349

5.4 Results350

True weights Knockoffs Desp. lasso CluDL EnCluDL

Figure 3: True support and estimated support for the first seed of the central scenario.
Left: The support in yellow is composed of four regions of width h = 4 covariates. The
tolerance region in green surrounds the support, its width is δ = 6 covariates. The
remaining covariates in blue form the δ-null region. Others: The yellow squares are the
covariates selected by each method. Knockoffs selects few covariates when controlling
the k-FWER at 10% for k = 4. Desparsified Lasso only retrieves 3 covariates when
controlling the FWER at 10%. For C = 200, CluDL and EnCluDL have good power
and control the δ-FWER at 10% for δ = 6.

In Fig. 3, we plot the maps estimated by knockoffs, desparsified Lasso, CluDL and351

EnCluDL for C = 200 when solving the first seed of the central scenario simulation.352

Regarding knockoffs and desparsified Lasso solutions, we notice that the power is low353
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and the methods select few covariates in each predictive region. The CluDL method is354

more powerful and recovers groups of covariates that correspond more closely to the true355

weights. However, the shape of the CluDL solution depends on the clustering choice.356

The EnCluDL solution seems even more powerful than the CluDL one and recovers357

groups of covariates that correspond almost perfectly to the true weights. Both CluDL358

and EnCluDL are only accurate up to the spatial tolerance which is δ = 6, but EnCluDL359

fits the ground truth more tightly.360

100 200 300 400
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ER

Knockoffs
Desp. lasso
CluDL
EnCluDL
Nominal rate

100 200 300 400
number of clusters (C)

0.0
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0.8
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Figure 4: Results for fixed simulation parameters corresponding to the central scenario
simulation. The green line with circles correspond to knockoffs, the brown line with
triangles is the desparsified Lasso, the purple squared line correspond to CluDL and
the blue plain line is EnCluDL. Left: Empirical FWER for desparsified Lasso, k-FWER
for knockoffs and δ-FWER for CluDL and EnCluDL. The 80% confidence intervals are
obtained by Binomial approximation. Right: Median true positive rate (TPR) for all
the procedures, together with 80% confidence interval obtained by taking the first decile
and last decile TPR.

In Fig. 4, we focus on the central scenario to get more insight about the statistical361

properties of the methods and the influence of the C hyper-parameter for CluDL and362

EnCluDL. First, we observe that all methods reach the targeted control: desparsified363

Lasso controls the FWER, knockoffs control the k-FWER and, CluDL and EnCluDL364

control the δ-FWER. Second, considering the true positive rates (TPR), we notice that365

the methods that do not integrate a compression step, i.e., knockoffs and desparsified366

Lasso, have a limited statistical power due to n� p. However, CluDL has decent power367

and EnCluDL improves over CluDL thanks to clustering randomization. Finally, CluDL368

and EnCluDL are flexible with respect to the choice of C since the TPR varies quite369

slowly with C.370

We have also studied the influence of the simulation parameters by varying one pa-371

rameter of the central scenario. The corresponding results are available in Supplement D.372

The main conclusion gained from these complementary results is the fact that, up to the373

limit given by the desired spatial tolerance δ, the choice of C should be made in function374

of the data structure. More precisely, good clustering creates clusters that are weakly375

correlated and contains covariates that are highly correlated. This observation is linked376

to assumption (ii) of Prop. 4.1.377
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6 Discussion378

When n � p, statistical inference on predictive model parameters is a hard problem.379

However, when the data are spatially structured, we have shown that ensembled clustered380

inference procedures are attractive, as they exhibit statistical guarantees and good power.381

The price to pay is to accept that inference is only accurate up to spatial distance δ382

corresponding to the clustering diameter, thus replacing FWER with δ-FWER control383

guarantees.384

One of the most obvious field of application of this class of algorithms is neuroscience385

where it can be used to solve source localization problems. In that regards, a wide386

empirical validation of EnCluDL has been conducted in Chevalier et al. [2021] including387

fMRI data experiments. Also, an extension of EnCluDL was proposed in Chevalier388

et al. [2020] to address the magneto/electroencephalography source localization problem389

which involves spatio-temporal data.390

With EnCluDL, the statistical inference step is performed by the desparsified Lasso.391

In Nguyen et al. [2019], another ensembled clustered inference method that leverages392

the knockoff technique [Barber and Candès, 2015] leading to a procedure called ECKO393

has been tested. However, formal δ-FDR control guarantees have not been established394

yet for this model. It would be also quite natural to try other inference techniques such395

as the (distilled) conditional randomization test [Candès et al., 2018, Liu and Janson,396

2020].397

In the present work, we have only considered the linear regression setup. However,398

combining the same algorithmic scheme with statistical inference solutions for gener-399

alized linear models, we could extend this work to the logistic regression setup. This400

would extend the usability of ensembled clustered inference to many more application401

settings.402
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Supplementary material for “Spatially relaxed546

inference on high-dimensional linear models"547

A Desparsified Lasso on the compressed model548

Here, we clarify the assumptions and refinements that occur when chosing the despar-549

sified Lasso as the procedure that performs the statistical inference on the compressed550

model. The desparsified Lasso was first developed in Zhang and Zhang [2014] and Ja-551

vanmard and Montanari [2014], and thoroughly analyzed in van de Geer et al. [2014].552

Following notation in Eq. (3), the true support in the compressed model is denoted by553

S(θ∗) = {c ∈ [C] : θ∗c 6= 0} and its cardinality by s(θ∗) = |S(θ∗)|. We also denote by554

Ω ∈ RC×C the inverse of the population covariance matrix of the groups, i.e., Ω = Υ−1.555

Then, for c ∈ [C], the sparsity of the c-th row of Ω (or c-th column) is s(Ωc,.) = |S(Ωc,.)|,556

where S(Ωc,.) = {c′ ∈ [C] : Ωc,c′ 6= 0}. We also denote the smallest eigenvalue of Υ557

by φmin(Υ) > 0. We can now state the assumptions required for probabilistic inference558

with desparsified Lasso [van de Geer et al., 2014]:559

Theorem A.1 (Theorem 2.2 of van de Geer et al. [2014]). Considering the model in
Eq. (3) and assuming:

(i) 1/φmin(Υ) = O(1) ,

(ii) max
c∈[C]

(Υc,c) = O(1) ,

(iii) s(θ∗) = o(
√
n/ log(C)) ,

(iv) max
c∈[C]

(s(Ωc,.)) = o(n/ log(C)) ,

then, denoting by θ̂ the desparsified Lasso estimator derived from the inference procedure
described in van de Geer et al. [2014], the following holds:

√
n(θ̂ − θ∗) = ξ + ζ ,

ξ|Z ∼ N (0C , σ2
ηΩ̂) ,

‖ζ‖∞ = oP(1) ,

where Ω̂ is such that
∥∥∥Ω̂−Ω

∥∥∥
∞

= oP(1).560

Remark A.1. In Theorem A.1, to compute confidence intervals, the noise standard561

deviation ση in the compressed problem has to be estimated. We refer the reader to the562

surveys that are dedicated to this subject such as Reid et al. [2016], Ndiaye et al. [2017],563

Yu and Bien [2019].564

As argued in van de Geer et al. [2014], from Theorem A.1 we obtain asymptotic
confidence intervals for the r-th element of θ∗ from the following equations, for all
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z1 ∈ R and z2 ∈ R+:

P

√n(θ̂c − θ∗c )

ση

√
Ω̂c,c

≤ z1

∣∣∣∣ Z

− Φ(z1) = oP(1) ,

P

√n|θ̂c − θ∗c |
ση

√
Ω̂c,c

≤ z2

∣∣∣∣ Z

− (2Φ(z2)− 1) = oP(1) ,

(9)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Thus, for each c ∈ [C] one can provide a p-value that assesses whether or not θ∗c is equal
to zero. In the case of a two-sided single test, for each c ∈ [C], the p-value denoted by
p̂Gc is:

p̂Gc = 2

1− Φ

 √n|θ̂c|
ση

√
Ω̂c,c

 . (10)

Under H0(Gc), from (9), we have, for any α ∈ (0, 1):

P(p̂Gc ≤ α | Z) = 1− P

 √n|θ̂c|
ση

√
Ω̂c,c

≤ Φ−1
(

1− α

2

) ∣∣∣∣ Z


= α+ oP(1) .

(11)

Then, (11) shows that the p-values p̂Gc asymptotically control type 1 errors. Using the
Bonferroni correction, the family of corrected p-values q̂G = (q̂Gc )c∈[C] remains defined
by:

q̂Gc = min{1, C × p̂Gc } . (12)

Then, for all α ∈ (0, 1):

FWERα(q̂G) = P( min
c∈NG

q̂Gc ≤ α | Z) ≤ α+ oP(1) . (13)

Then, (13) shows that the p-value family q̂G asymptotically control FWER. Finally,565

we have shown that desparsified Lasso applied to a compressed version of the original566

problem provides cluster-wise p-value families p̂G and q̂G that control respectively the567

type 1 error and the FWER in the compressed model only asymptotically.568

B Relaxing the uncorrelated clusters assumption569

As noted in Sec. 4.3, assumption (ii) of Prop. 4.1 is often unmet in practice. Here, taking570

the particular case in which the inference step is performed by desparsified Lasso, we571

relax the assumption and show that it is still possible to compute an adjusted corrected p-572

value that asymptotically controls the δ-FWER. Hopefully, the technique used to derive573
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this relaxation would also applicable to other parametric statistical inference methods574

such as corrected ridge. To better understand the development made in this section,575

the adjusted p-values of this section should be compared with the original p-values of576

Supplement A. Note that, this extension is easy to integrate in the proof of the main577

results Theorem 4.1 as it just requires to use the adjusted corrected p-value instead578

of the original corrected p-value. Also, it does not provide much more insight about579

clustered inference algorithms. This is why we have decided to keep this extension for580

Supplementary Materials.581

First, we replace Prop. 4.1 by the next proposition that is a consequence of Bühlmann582

et al. [2013, Proposition 4.4].583

Proposition B.1. Considering the Gaussian linear model in (1) and assuming:584

(i) for all c ∈ [C], for all j, k ∈ G2
c , Cov(X.,j ,X.,k | {Z.,c′ : c′ 6= c}) ≥ 0 ,585

(ii.a) for all c ∈ [C], there exists νc ∈ R+ s.t. for all j ∈ Gc, for all k /∈ Gc ,

|Cov(X.,j ,X.,k | {Z.,c′ : c′ 6= c})| ≤ νc ,

(ii.b) for all c ∈ [C], there exists τc > 0 s.t. Var(Z.,c | {Z.,c′ : c′ 6= c}) ≥ τc ,586

(iii) for all c ∈ [C],
(
for all j ∈ Gc,β∗j ≥ 0

)
or
(
for all j ∈ Gc,β∗j ≤ 0

)
,587

then, in the compressed representation (3), θ∗ admits the following decomposition:

θ∗ = θ̃ + κ , (14)

where, for all c ∈ [C], |κc| ≤ (νc / τc)‖β∗‖1 and θ̃c 6= 0 if and only if there exists j ∈ Gc588

such that β∗j 6= 0. If such an index j exists then sign(θ̃c) = sign(β∗j ).589

Proof. See Supplement E.1.590

The assumptions (i) and (ii) in Prop. 4.1 are replaced by (i), (ii.a) and (ii.b) in591

Prop. B.1. More precisely, instead of assuming that the covariates inside a group are592

positively correlated, we assume that they are positively correlated conditionally to all593

other groups. Also, we relax the more questionable assumption of groups independence;594

we assume instead that the conditional covariance of two covariates of different groups595

is bounded above (ii.a) and that the conditional variance of the group representative596

variable is non-zero (ii.b). In practice, except when group representative variables are597

linearly dependent, we can always find values for which (ii.a) and (ii.b) are verified, but598

we would like the upper bound of (ii.a) as low as possible and the lower bound of (ii.b)599

as high as possible. Finally, assumption (iii) remains unchanged.600

Then, as done in Supplement A, we can build θ̂. Under the same assumptions,
Theorem A.1 is still valid and θ̂ still verifies (9). However, here we want to estimate θ̃,
not θ∗. Combining Theorem A.1 and Prop. B.1, we can see θ̂ as a biased estimator of
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θ̃. To take this bias into account, we need to adjust the definition of the p-values given
by (10). Let us assume that, for a given a ∈ R+,

max
c∈[C]

 νc

τc

√
Ω̂c,c

 ≤ a σε
‖β∗‖1

. (15)

And, for all c ∈ [C], let us define the adjusted p-values:

p̂Gc = 2

1− Φ

√n
 |θ̂c|

ση

√
Ω̂c,c

− a


+


 . (16)

Let us denote by q1−α2 = Φ−1(1 − α
2 ) the 1 − α

2 quantile of the standard Gaussian601

distribution. Then, under H0(Gc), the hypothesis which states that β∗j = 0 for j ∈ Gc602

implying that θ̃c = 0, we have, for any α ∈ (0, 1):603

P(p̂Gc ≤ α | Z) = 1− P

√n
 |θ̂c|

ση

√
Ω̂c,c

− a


+

≤ q1−α2

∣∣∣∣ Z


≤ 1− P

√n
 |θ̂c|

ση

√
Ω̂c,c

− νc ‖β∗‖1
σετc

√
Ω̂c,c


+

≤ q1−α2

∣∣∣∣ Z


≤ 1− P

√n
 |θ̂c| − |κc|
ση

√
Ω̂c,c


+

≤ q1−α2

∣∣∣∣ Z


= 1− P

√n
 |θ̂c| − |θ∗c |
ση

√
Ω̂c,c


+

≤ q1−α2

∣∣∣∣ Z


≤ 1− P

√n |θ̂c − θ∗c |
ση

√
Ω̂c,c

≤ q1−α2

∣∣∣∣ Z


= α+ oP(1) .

(17)

Finally, we have built a cluster-wise adjusted p-value family that asymptotically exhibits,604

with low probability (< α), low value (< α) for the clusters which contain only zero605

weight covariates. To complete the proof in the case of correlated clusters, one can606

proceed as in uncorrelated cluster case taking (16) instead of (10).607

Now, let us come back to the interpretation and choice for the constant a. In608

Prop. B.1, we have shown that, when groups are not independent, a group weight in the609

compressed model can be non-zero even if the group only contains zero weight covariates.610

However, the absolute value of the weight of such a group is necessarily upper bounded.611

We thus introduce a ∈ R+ in (16) to increase the p-values by a relevant amount and612
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keep statistical guarantees concerning the non-discovery of a such group. The value of a613

depends on the physics of the problem and on the choice of clustering. While the physics614

of the problem is fixed, the choice of clustering has a strong impact on the left term of615

(15) and a "good" choice of clustering results in a lower a (less correction). To estimate616

a, we need to find an upper bound of ‖β∗‖1, a lower bound of σε and to estimate the617

left term of (15). In practice, to compute p-values, we took a = 0 since the formula in618

(10) was already conservative for all the problems we considered.619

C EnCluDL620

Weight map
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Clustering #B

 
 

Clustering #1   
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weight maps

  

 

Figure 5: Summary of the mechanism of ensemble of clustered desparsified Lasso (En-
CluDL). EnCluDL combines three algorithmic steps: a clustering procedure, the despar-
sified Lasso statistical inference procedure to derive p-value maps, and an ensembling
method that synthesizes several p-value maps into one.

Computationally, to derive the EnCluDL solution we must solve B independent621

CluDL problems, making the global problem embarrassingly parallel; nevertheless, we622

could run the CluDL algorithm on standard desktop stations without parallelization623

with n = 400, p ≈ 105, C = 500 and B = 25 in less than 10 minutes. Note that, the624

clustering step being much quicker than the inference step, p has a very limited impact625

on the total computation time.626

The complexity for solving the Lasso depends significantly on the choice of solver,627

we then give the complexity in numbers of Lasso. The complexity for solving EnCluDL628

is given by the complexity of the resolution of O(B×C) Lasso problems with n samples629

and C covariates, i.e., with clustering. It is noteworthy that the complexity for solving630

the desparsified Lasso on the original problem is given by the complexity of the resolution631

of O(p) Lasso problems with n samples and p covariates, i.e., without clustering. Then,632

EnCluDL should be much faster than the desparsified Lasso whenever p� C.633
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D Complementary simulation results634
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Figure 6: Results for various simulation parameters. The green line with circles corre-
spond to the knockoffs, the brown line with triangle is the desparsified lasso, the dashed
blue lines are for EnCluDL with length of the dashes increasing when C diminishes: large
dashes are for C = 100, medium for C = 200, small for C = 300, tiny for C = 400. We
compute the same FWER and TPR quantities as in Fig. 4, and the same 80% confidence
intervals: by Binomial approximation for the FWER and taking first and last deciles for
the TPR.
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In Fig. 6, we study the influence of the simulation parameters by varying one param-635

eter of the central scenario at a time. We vary the noise standard deviation, the number636

of samples, the local correlation and the size of the support. For a better readability of637

the figures, we do not analyze the results of CLuDL since it is expected to be always638

a bit less powerful than EnCluDL while showing a similar behavior. First, we look at639

the plots where we vary the noise standard deviation σ. We observe that the methods640

reach the targeted FWER control and notice that EnCluDL benefits more strongly from641

the decrease of σ regarding support recovery. Second, we analyze the results for vari-642

ous sample sizes (n) values. Concerning EnCluDL, we notice that the δ-FWER is not643

controlled when n = 50 except for C = 100. This is not surprising since the δ-FWER644

control is asymptotic and n = 50 is not sufficient. In terms of support recovery, the645

problem gets easier with larger n, but only EnCluDL benefits strongly from an increase646

of n. Third, we investigate the influence of the level of correlation between neighboring647

covariates (ρ). Regarding FWER control, desparsified lasso does not control the FWER648

when ρ = 0.5. Regarding the statistical power of EnCluDL, as one would expect, when649

the spatial structure is strong i.e., ρ > 0.9, it is relevant to pick larger clusters, i.e., to650

take a smaller C. Indeed, to make a relevant choice for C, data structure has to be taken651

into account to derive good covariates’ clustering; this is true up to the limit given by652

the desired spatial tolerance. A good clustering creates clusters that are weakly corre-653

lated and contains covariates that are highly correlated. This observation is linked to654

assumption (ii) of Prop. 4.1 or to assumption (ii.a) and (ii.b) of Prop. B.1. Finally,655

we consider the results for different support sizes coded by the active region width h.656

Sparsity is a crucial assumption for desparsified lasso and then for EnCluDL. Also, when657

p (or C) increases the required sparsity is greater. This explains why when h = 8 and658

C ≥ 300, the empirical δ-FWER is slightly above the expected nominal rate. Regarding659

the statistical power of EnCluDL, as one could expect, when the active regions are large,660

it is relevant to use large clusters. However, it can be difficult to estimate this parameter661

in advance, thus we prefer to consider desired spatial tolerance parameter δ and data662

structure to set C.663

E Proofs664

E.1 Proof of Prop. 4.1 and Prop. B.1665

First, we start by the proof of Prop. 4.1 which is derived from Bühlmann et al. [2013,666

Proposition 4.3]:667

Proof. With assumption (ii) and Bühlmann et al. [2013, Proposition 4.3], we have, for
all c ∈ [C]:

θ∗c = |Gc|
∑
j∈Gc

wjβ
∗
j ,
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where, for all j ∈ Gc:

wj =
∑
k∈Gc Σj,k∑

k∈Gc
∑
k′∈Gc Σk,k′

.

From assumption (i), we have wj > 0 for all j ∈ Gc. Assumption (iii) ensures that, for668

all j ∈ Gc, the β∗j have the same sign. Then, θ∗c is of the same sign as the β∗j and is669

non-zero only if there exists j ∈ Gc such that β∗j 6= 0.670

Now, we give the proof of Prop. B.1 which is mainly derived from Bühlmann et al.671

[2013, Proposition 4.4]:672

Proof. With assumption (ii.a) and (ii.b) and Bühlmann et al. [2013, Proposition 4.4],
we have, for all c ∈ [C]:

θ∗c = |Gc|
∑
j∈Gc

w′jβ
∗
j + κc ,

where

w′j =
∑
k∈Gc Cov(X.,j ,X.,k | {Z.,c′ : c′ 6= c})∑

k∈Gc
∑
k′∈Gc Cov(X.,k,X.,k′ | {Z.,c′ : c′ 6= c}) ,

and, for all c ∈ [C]

|κc| ≤ (νc / τc)‖β∗‖1 .

Let us define θ̃ by

θ̃c = |Gc|
∑
j∈Gc

w′jβ
∗
j .

Then,

θ∗ = θ̃ + κ ,

And, similarly as in the proof of Prop. 4.1, from assumption (i) and (iii), θ̃c is of the673

same sign as the β∗j for j ∈ Gc and is non-zero only if there exists j ∈ Gc such that674

β∗j 6= 0.675

E.2 Proof of Prop. 4.2676

Before going trough the proof of Prop. 4.2, we introduce the grouping function g that
matches the covariate index to its corresponding group index:

g : [p]→ [C]
j 7→ c if j ∈ Gc .

Then, (7) can be rewritten as follows:

for all j ∈ [p], p̂j = p̂Gg(j) ,

for all j ∈ [p], q̂j = q̂Gg(j) .
(18)
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Proof. (i) Suppose that we are under Hδ
0(j). Since the cluster diameters are all smaller

than δ, all the covariates in Gg(j) have a corresponding weight equal to zero. Thus,
using Prop. 4.1, we have θ∗g(j) = 0, i.e., we are under H0(Gg(j)). Under this last null-
hypothesis, using (11) and (18), we have:

for all α ∈ (0, 1), P(p̂Gg(j) ≤ α) = P(p̂j ≤ α) = α .

This last result being true for any j ∈ N δ, we have shown that the elements of the family677

p̂ control the δ-type 1 error.678

(ii) As mentioned in Sec. 4.4, we know that, the family q̂G controls the FWER, i.e., for
α ∈ (0, 1) we have P(minc∈NG q̂Gc ≤ α) ≤ α. Let us denote by g−1(NG) the set of indexes
of covariates that belong to the groups of NG , i.e., g−1(NG) = {j ∈ [p] : g(j) ∈ NG}.
Again, given that all the cluster diameters are smaller than δ and using Prop. 4.1, if
j ∈ N δ then g(j) ∈ NG . That is to say N δ ⊂ g−1(NG). Then, we have:

min
j∈Nδ

(q̂j) ≥ min
j∈g−1(NG)

(q̂j) .

We can also notice that:
min

j∈g−1(NG)
(q̂j) = min

j∈g−1(NG)
(q̂Gg(j))

= min
g(j)∈NG

(q̂Gg(j)) .

Replacing g(j) ∈ [C] by c ∈ [C], and using (6), we obtain:

for all α ∈ (0, 1), P(min
j∈Nδ

(q̂j) ≤ α) ≤ P( min
c∈NG

q̂Gc ≤ α) ≤ α .

This last result states that the family (q̂j)j∈[p] controls the δ-FWER.679

E.3 Proof of Prop. 4.3680

The proof of Prop. 4.3 is inspired by the one proposed by Meinshausen et al. [2009].681

However, it is subtly different since we can not remove the term minj∈Nδ and have to682

work with it to obtained the desired inequality. First, we start by making a short remark683

about the γ-quantile quantity.684

Definition E.1 (empirical γ-quantile). For a set V of real numbers and γ ∈ (0, 1), let

γ-quantile(V ) = min
{
v ∈ V : 1

|V |
∑
w∈V

1w≤v ≥ γ
}

. (19)

Remark E.1. For a set of real number V and for a ∈ R, let us define the quantity
π(a, V ) by the following:

π(a, V ) = 1
|V |

∑
v∈V

1 (v ≤ a) (20)

Then, for γ ∈ (0, 1), the two events E1 = {π(a, V ) ≥ γ} and E2 = {γ-quantile(V ) ≤ a}685

are identical.686
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Now, we give the proof of Prop. 4.3.687

Proof. First, one can notice that, from (8), we have:

min
j∈Nδ

(q̃j(γ)) ≥ min

1, γ-quantile

min
j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]


 .

Then, for α ∈ (0, 1):

P
(

min
j∈Nδ

(q̃j(γ)) ≤ α
)
≤ P

min

1, γ-quantile

min
j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]


 ≤ α


= P

γ-quantile
min

j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]


 ≤ α

 .

Using Rem. E.1, for γ ∈ (0, 1), with:

V =

min
j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]

 and a = α ,

and noticing that:

π

α,
min
j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]


 = 1

B

B∑
b=1

1

{
min
j∈Nδ

(q̂(b)
j ) ≤ αγ

}
,

then, we have:

P

γ-quantile
min

j∈Nδ

 q̂(b)
j

γ

 : b ∈ [B]


 ≤ α

 = P
(

1
B

B∑
b=1

1

{
min
j∈Nδ

(q̂(b)
j ) ≤ αγ

}
≥ γ

)
.

Then, the Markov inequality gives:

P
(

1
B

B∑
b=1

1

{
min
j∈Nδ

(q̂(b)
j ) ≤ αγ

}
≥ γ

)
≤ 1
γ
E
[

1
B

B∑
b=1

1

{
min
j∈Nδ

(q̂(b)
j ) ≤ αγ

}]
.

Then, using the assumption that the B families (q̂(b)
j )j∈[p] control of the δ-FWER (last

inequality), we have:

1
γ
E
[

1
B

B∑
b=1

1

{
min
j∈Nδ

(q̂(b)
j ) ≤ αγ

}]
= 1
γ

1
B

B∑
b=1

P
(

min
j∈Nδ

(q̂(b)
j ) ≤ αγ

)
≤ α .

Finally, we have shown that, for α ∈ (0, 1):

P
(

min
j∈Nδ

(q̃j(γ)) ≤ α
)
≤ α .

This establishes that the family (q̃j(γ))j∈[p] controls the δ-FWER.688
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E.4 Proof of Theorem 4.1689

To show Theorem 4.1, we connect the previous results: Prop. 4.1, Prop. 4.2 and Prop. 4.3.690

First, we prove that clustered inference algorithms produce a p-value family that controls691

the δ-FWER.692

Proof. Assuming the noise model (1), assuming that Ass. 2.1 and Ass. 2.2 are verified693

for a distance parameter larger than δ and that the clustering diameter is smaller than694

δ, then we directly obtain the assumption (i) and (iii) of Prop. 4.1. This means that the695

compressed representation has the correct pattern of non-zero coefficients, in particular696

it does not include in the support clusters of null-only covariates. Additionally, if one is697

able to perform a valid statistical inference on the compressed model (3), i.e., to produce698

cluster-wise p-values such that (4) holds, then Prop. 4.2 ensures that the p-value family699

constructed using the de-grouping method presented in (7) controls the δ-FWER.700

Now, we prove that ensembled clustered inference algorithms produce a p-value fam-701

ily that controls the δ-FWER.702

Proof. Given the above arguments, the p-value families produced by clustered inference703

algorithms subject to all clusterings fulfilling the theorem hypotheses control the δ-704

FWER. Then, using the aggregation method given by (8), we know from Prop. 4.3 that705

the aggregated p-value family also controls the δ-FWER.706
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