
HAL Id: hal-03179728
https://hal.archives-ouvertes.fr/hal-03179728

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoding with Confidence: Statistical Control on
Decoder Maps

Jérôme-Alexis Chevalier, Tuan-Binh Nguyen, Joseph Salmon, Gaël
Varoquaux, Bertrand Thirion

To cite this version:
Jérôme-Alexis Chevalier, Tuan-Binh Nguyen, Joseph Salmon, Gaël Varoquaux, Bertrand Thirion. De-
coding with Confidence: Statistical Control on Decoder Maps. NeuroImage, Elsevier, 2021, pp.117921.
�10.1016/j.neuroimage.2021.117921�. �hal-03179728�

https://hal.archives-ouvertes.fr/hal-03179728
https://hal.archives-ouvertes.fr


Decoding with Confidence:1

Statistical Control on Decoder Maps2

Jérôme-Alexis Chevalier1,2,3, Tuan-Binh Nguyen1,2,3,4, Joseph Salmon5,
Gaël Varoquaux1,2,3, Bertrand Thirion1,2,3

jerome-alexis.chevalier@inria.fr

3

1 Parietal project-team, Inria Saclay-Ile de France, Palaiseau, France4
2 CEA/Neurospin bat 145, Gif-Sur-Yvette, France5
3 Université Paris-Saclay, Gif-Sur-Yvette, France6

4 LMO, Université Paris-Saclay, Orsay, France7
5 IMAG, Université de Montpellier, CNRS, Montpellier, France8

Keywords: fMRI, Decoding, Statistical Methods, Multivariate Model, Inference, Sta-9

tistical Control, Support Recovery, High Dimension.10

Abstract11

In brain imaging, decoding is widely used to infer relationships between brain12

and cognition, or to craft brain-imaging biomarkers of pathologies. Yet, standard13

decoding procedures do not come with statistical guarantees, and thus do not give14

confidence bounds to interpret the pattern maps that they produce. Indeed, in15

whole-brain decoding settings, the number of explanatory variables is much greater16

than the number of samples, hence classical statistical inference methodology cannot17

be applied. Specifically, the standard practice that consists in thresholding decoding18

maps is not a correct inference procedure. We contribute a new statistical-testing19

framework for this type of inference. To overcome the statistical inefficiency of20

voxel-level control, we generalize the Family Wise Error Rate (FWER) to account21

for a spatial tolerance δ, introducing the δ-Family Wise Error Rate (δ-FWER).22

Then, we present a decoding procedure that can control the δ-FWER: the Ensemble23

of Clustered Desparsified Lasso (EnCluDL), a procedure for multivariate statistical24

inference on high-dimensional structured data. We evaluate the statistical properties25

of EnCluDL with a thorough empirical study, along with three alternative procedures26

including decoder map thresholding. We show that EnCluDL exhibits the best27

recovery properties while ensuring the expected statistical control.28

1 Introduction29

Predicting behavior or diseases status from brain images is an important analytical30

approach for imaging neurosciences, as it provides an effective evaluation of the infor-31

mation carried by brain images. Machine learning tools, mostly supervised learning, are32
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indeed used on brain images to infer cognitive states [Haynes and Rees, 2006, Norman33

et al., 2006] or to perform diagnosis or prognosis [Demirci et al., 2008, Fan et al., 2008].34

Brain images are obtained from MRI or PET imaging, or even EEG- or MEG-based35

volume-based activity reconstruction. They are used to predict a target outcome: bi-36

nary (e.g., two-condition tasks), discrete (e.g., multiple-condition tasks) or continuous37

(e.g., age). The decoding models used for such predictions are most often linear models,38

characterized by a weight map that can be represented as a brain image [Mourao-Miranda39

et al., 2005, Varoquaux and Thirion, 2014].40

Besides the prediction accuracy achieved, this estimated weight map is crucial to41

assess the information captured by the model. Typically, the produced weight maps42

are used to identify discriminative patterns [Haxby et al., 2001, Mourao-Miranda et al.,43

2005, Gramfort et al., 2013] and support reverse inferences [Poldrack, 2011, Schwartz44

et al., 2013, Varoquaux et al., 2018], i.e., conclude on the implication of brain regions45

in the studied process.46

Unlike in standard analysis —statistical parametric mapping [Poldrack et al., 2011,47

chap 7]—, in decoding the feature importance is tested conditional on other brain fea-48

tures, i.e., it assesses whether each feature adds to information conveyed by other fea-49

tures. Weichwald et al. [2015] highlight the fact that decoding, i.e., multivariate or50

conditional analysis, and encoding, i.e., univariate or marginal analysis, are comple-51

mentary. They notably argue that taking the two perspectives is essential for causal52

interpretation regarding the implication of brain regions in the target outcome (see also53

Haufe et al. [2014]).54

While decoding optimizes the prediction of a target outcome, little or nothing can55

be concluded about the significant features of weight maps. Indeed, those maps do56

not come with well-controlled statistical properties, making decoding models hard to57

interpret. For instance, considering linear Support Vector Machines (SVM) [Cortes and58

Vapnik, 1995] or linear Support Vector Regression (SVR) [Smola and Schölkopf, 2004],59

that are popular in neuroimaging [Pereira et al., 2009, Rizk-Jackson et al., 2011], a60

natural way to recover predictive regions from their weight maps is to threshold these61

maps (e.g. Mourao-Miranda et al. [2005], Rehme et al. [2015], Sato et al. [2013], Lee62

et al. [2010]). However, this approach is problematic for two reasons: there exists no63

clear way to choose the threshold as a function of a desired significance, and it is unclear64

whether such a thresholded map is still an accurate predictor of the outcome. Solutions65

that bypass the arbitrary threshold choice have been proposed, such as Recursive Feature66

Elimination (RFE) [De Martino et al., 2008], but the produced maps still lack statistical67

guarantees.68

In this work, we show that the natural procedure that consists in thresholding stan-69

dard decoders, such as SVR, is not a relevant solution. In this respect, we consider two70

thresholding strategies: one that keeps extreme weights, and another one that computes71

the threshold by performing a permutation test. Unlike RFE, these two thresholding72

strategies can be derived from statistical testing considerations —yet, these statistical73

properties are not assumption free. We also consider decoders that provide confidence74

intervals around the estimated weight map. As detailed in the next section, these ap-75
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proaches also face severe challenges in terms of statistical power and computational76

tractability. They have to rely on algorithmic shortcuts, approximations and hypotheses77

that are more or less problematic in practice.78

Hence, for all methods considered, the control of false detections is only achieved79

within a certain theoretical framework, and given a series of assumptions that are not80

easily checked. It is thus fundamental to analyze their statistical behavior with an81

extensive empirical study. We present here a set of experiments assessing the accuracy82

of the error rate control and support recovery on real and semi-synthetic brain-imaging83

data.84

Additionally, to achieve a reasonable compromise between error control and power,85

we introduce a new type of error control adapted to imaging problems. The proposed86

quantity is a generalization of the Family Wise Error Rate (FWER) [Hochberg and87

Tamhane, 1987] including a spatial tolerance parametrized by a distance δ. We call it88

δ-FWER.89

In Section 2, we bring useful background, discuss the statistical guarantees that we90

aim at for pattern maps, and make the theoretical and practical inference challenges91

explicit. In Section 3 we provide a definition of the δ-FWER along with a geometrical92

interpretation of this quantity. We also describe several statistical inference methods93

producing statistical maps reflecting the significance of conditional association of brain94

regions with a target, while controlling the FWER or δ-FWER. Section 4 and Section 595

follow with extensive experiments on simulations and large-scale fMRI datasets that96

study the behavior of the benchmarked solutions regarding false positive control and97

recovery.98

2 Context: decoding-map recovery99

In this section, we first review a result due to Weichwald et al. [2015] about the com-100

plementarity of univariate and multivariate inference, then we present the statistical101

guarantees that we aim at for on brain-wide decoding maps, lastly we formalize the102

problem of statistical inference on such maps.103

2.1 Complementarity of univariate and multivariate inference104

Statistical inference in neuroimaging can be performed using a mass univariate model-105

ing, i.e., fitting brain activity maps from an outcome —leading to encoding models—106

or by predicting an outcome from brain maps using multivariate modeling —leading to107

decoding models. The complementarity of univariate and multivariate analyses has been108

demonstrated in Weichwald et al. [2015]. Specifically, they argued: “We showed that only109

encoding models in a stimulus-based setting support unambiguous causal statements.110

This result appears to imply that decoding models, despite their gaining popularity in111

neuroimaging, are of little value for investigating the neural causes of cognition. In the112

following, we argue that this is not the case. Specifically, we show that by combining113

encoding and decoding models, we gain insights into causal structure that are not pos-114
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sible by investigating each type of model individually.” This statement clearly implies115

that inference tools are needed for multivariate analysis. The present work is thus fully116

dedicated to multivariate inference. We simply provide some univariate inference results117

for reference, given that they address different yet complementary questions.118

2.2 Statistical control with spatial tolerance119

In decoding, the signals from voxels are used concurrently to predict an outcome. Given120

that they display high correlations, trying to identify the effect of each covariate (voxel)121

is not possible. Precise voxel-level control may not be necessary: current brain models122

are rather specified at a regional scale, see e.g., [Glasser et al., 2016]. Additionally, to123

control a statistical error, detecting a voxel adjacent to a truly predictive region is less124

problematic than detecting a false positive far from such a predictive region. These125

two facts argue in favor of incorporating a spatial tolerance in the sought statistical126

control, as with efforts in standard analysis [Smith and Nichols, 2009, Da Mota et al.,127

2014, Bowring et al., 2019]. Hence, we introduce a generalization of the Family Wise128

Error Rate (FWER) [Hochberg and Tamhane, 1987]: the δ-FWER. This generalization129

is related to the extension of the False Discovery Rate (FDR) [Benjamini and Hochberg,130

1995] proposed by Nguyen et al. [2019] and Gimenez and Zou [2019], called δ-FDR and131

local-FDR, respectively.132

2.3 Formal problem setting133

Notation. For clarity, we use bold lowercase for vectors and bold uppercase for ma-134

trices. For p ∈ N, we write [p] for the set {1, . . . , p}. For a vector w, wj refers to its j-th135

coordinate. For a matrix X, Xi,j refers to the element in the i-th row and j-th column.136

Formalizing the decoding problem. The target (outcome to decode) is observed in137

n samples and denoted by y ∈ Rn (y can be binary, discrete or continuous). The brain138

volume is discretized into p voxels. The corresponding p voxel signals are also referred139

to as explanatory variables, covariates or features. We denote by X ∈ Rn×p the matrix140

containing (column-wise) the p covariates {X1, . . . ,Xp}. We assume that, for all i ∈ [n],141

the samples (yi,Xi,.) are i.i.d. Then, further assuming a linear dependency between the142

covariates and the response, the generative model is as follows:143

y = Xw∗ + ε , (1)

where w∗ ∈ Rp is the true weight map and ε is the noise vector. In the present study,144

we assume for simplicity that the noise is Gaussian, i.e., ε ∼ N (0, σ2
εIn), but extension145

to sub-Gaussian noise is possible.146

High dimensionality and structure of the data. Given X and y, a standard147

procedure computes an estimate ŵ of w∗. Getting statistical guarantees on w∗j , j ∈ [p],148

means assessing with some degree of uncertainty that w∗j is non-zero, or equivalently,149
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giving a confidence interval for w∗j . This is hard in high dimension and when short-150

and long-range correlations are present in the data. Indeed, for brain imaging data, n151

is typically hundreds (or less), whereas p may amount to hundreds of thousands. In152

addition, voxel signals are highly correlated, which makes model identification harder153

due to multicollinearity and ill-posedness. Theoretical studies, e.g., Wainwright [2009],154

have revealed that in such settings there is no hope to recover completely and accurately155

the predictive regions.156

2.4 Current practices: thresholding decoding maps157

Uniform threshold. Probably the most natural procedure used to recover discrimi-158

native patterns is to threshold decoders with high prediction performance —a popular159

choice is the linear SVM/SVR decoder [Pereira et al., 2009, Rizk-Jackson et al., 2011].160

Thresholding decoder maps at a uniform value —i.e., the threshold is the same for all161

weights— is probably the most common practice in neuroimaging; threshold value being162

generally arbitrary: "naked-eye criteria". It is not thought of as a statistical operation,163

and is sometimes left to the reader, who is presented unthresholded maps and yet told164

to interpret only the salient features of these maps.165

Permutation testing can also be used to derive a uniform threshold with explicit guar-166

antees. The classical Westfall-Young permutation test procedure [Westfall and Young,167

1993] is well-known in the univariate context to control the FWER [Anderson, 2001],168

but its application to multivariate testing is not as straightforward. Then, instead of169

considering the usual t-statistics, a permutation test can use the linear SVR weights.170

An estimated weight map must be computed for the original problem and for several171

permuted problems before performing the Westfall-Young procedure; this method is172

detailed in Sec. 3.3.173

Under some assumptions (see Sec. 3.2 and Sec. 3.3) that are more or less problematic174

in practice, the uniform thresholding strategies might recover the predictive patterns175

with FWER control. However, we will see that these naive strategies are not satisfactory176

in practice.177

Non-uniform threshold. Another method proposed by Gaonkar and Davatzikos178

[2012], specifically designed for neuroimaging settings, relies on the analytic approxima-179

tion of a permutation test performed over a linear SVM/SVR estimator. This method180

computes confidence intervals around the weights of the proposed estimator. Then, un-181

der some assumptions (see Sec. 3.4) that are not always met in practice, this procedure182

controls the FWER. It is almost equivalent to thresholding the SVR weights with a183

non-uniform threshold —i.e., the threshold is specific to each weight. We refer to it as184

Adaptive Permutation Threshold SVR (Ada-SVR) from now on.185

2.5 Building decoders designed for statistical control186

Dimension reduction by voxel grouping. A computationally attractive solution to187

alleviate high dimensionality is to leverage the data structure and group adjacent —and188
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correlated— voxels, producing a closely related, yet compressed version of the original189

problem. In decoding, the grouping of voxels via spatially-constrained clustering algo-190

rithms has already been used to reduce the problem dimension [Gramfort et al., 2012,191

Varoquaux et al., 2012, Wang et al., 2015]. Specifically, groups of contiguous voxels can192

be replaced by the average signal they carry, reducing the dimensionality while improv-193

ing the conditioning of the estimation problem. However, such a compression introduces194

a bias, as the patterns are constrained by the clusters shape. This bias is problem-195

atic as there is no unique grouping or clustering of the voxels [Thirion et al., 2014]:196

many different groupings capture the signal as accurately. One way to mitigate this197

bias is to use aggregation of models [Breiman, 1996, Zhou, 2012] obtained from several198

voxel groupings. Varoquaux et al. [2012] implemented this idea by computing different199

groupings from different random subsamples of the full data sample. The corresponding200

procedure yields decoders with more stable maps as well as a better prediction accuracy.201

In this subsampling spirit, random subspace methods [Ho, 1998, Kuncheva et al., 2010,202

Kuncheva and Rodríguez, 2010] also improve the prediction accuracy with more stable203

solutions —but in this case the subsampling is performed on the raw features. More re-204

cently, a procedure, Fast Regularized Ensembles of Models (FReM) [Hoyos-Idrobo et al.,205

2018], has combined clustering and ensembling to reduce the variance of the weight map,206

while ensuring high prediction accuracy. Yet, FReM weight maps do not enjoy statistical207

guarantees.208

High-dimensional statistics tools. There have been a variety of procedures to pro-209

duce p-value maps (map of p-values associated to every covariate) for linear models in210

high dimension [Wasserman and Roeder, 2009, Meinshausen et al., 2009, Bühlmann,211

2013, Zhang and Zhang, 2014, Javanmard and Montanari, 2014]. Yet, they are not di-212

rectly applicable to brain-imaging settings, as the dimensionality is too high. Based on a213

comparative review of those procedures [Dezeure et al., 2015], we have focused on the so-214

called Desparsified Lasso (DL), introduced in Zhang and Zhang [2014] and thoroughly215

analyzed by van de Geer et al. [2014]. Roughly, Desparsified Lasso can be seen as a216

Lasso-type [Tibshirani, 1996] extension of the least-squares to high dimensional settings,217

producing weight maps with well-controlled satistical distribution.218

However, when the number p of features is much greater than the number n of219

samples, Desparsified Lasso lacks statistical power [Chevalier et al., 2018] and the com-220

putational cost becomes prohibitive. Indeed, solving Desparsified Lasso entails solving p221

Lasso problems with a design matrix X ∈ Rn×p. Using the standard coordinate descent222

implementation [Friedman et al., 2007] the computation time is O(Tnp2), with T the223

number of epochs used to solve the Lasso. However, when p is of order of few thou-224

sands and n few hundreds, Desparsified Lasso remains feasible with modest computer225

resources. In this context, the recently proposed Ensemble of Clustered Desparsified226

Lasso (EnCluDL) [Chevalier et al., 2018] combines three steps: a clustering procedure227

that reduces the problem dimension but preserves data structure, the Desparsified Lasso228

procedure that is tractable on the compressed problem, and an ensembling method intro-229

duced by Meinshausen et al. [2009] that aggregates several solutions of the compressed230
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problem. This method, summarized in Sec. 3.5, follows a scheme similar to FReM but231

the inference and ensembling procedures are different since it aims at producing p-value232

maps with statistical properties. Indeed, under some assumptions (see Sec. 3.5), it can233

be shown that EnCluDL controls the δ-FWER at the desired nominal level.234

Finally, Knockoff filters [Barber and Candès, 2015, Candès et al., 2018], extended to235

work on images by Nguyen et al. [2019], are also an appealing procedure, though they236

can only control the FDR [Barber and Candès, 2015] or a relaxed version of the FWER237

[Janson and Su, 2016] incompatible with our spatial control, the δ-FWER detailed be-238

low. In this study, following the previous work of Chevalier et al. [2018], we focus on239

FWER or δ-FWER control. We then defer the extension of EnCluDL to FDR-controlling240

procedures and the benchmarking with alternatives to future work.241

3 Materials and methods242

3.1 δ-Family Wise Error Rate (δ-FWER)243

In this section, we introduce a new way of controlling false detections that is well suited244

for neuroimaging settings as it incorporates spatial tolerance.245

True support under linear model assumption. When considering multivariate246

inference, the support S ⊂ [p] is the set of covariates that are non-independent of y247

conditionally to the other covariates. The rest of the voxels form the null region N248

i.e., N = [p] \ S. Formally, S is the unique set that verifies:249

∀j ∈ S, Xj 6⊥⊥ y | {Xk, k ∈ [p] \ {j}} ,
∀j ∈ N, Xj ⊥⊥ y | {Xk, k ∈ S} ,

(2)

where the sign ⊥⊥ denotes independence. Under the linear assumption made in (1), S250

becomes simply the set of non zero weights and N the set of zero weights:251

S = {j ∈ [p] : w∗j 6= 0} ,
N = {j ∈ [p] : w∗j = 0} .

(3)

δ-neighborhood. The variables X1,X2, . . . ,Xp can also be characterized by the spa-252

tial proximity of their underlying voxels in brain space: given δ ≥ 0, a voxel k ∈ [p] is in253

the δ-neighborhood of a voxel (or a set of voxels) if their distance is less than δ.254

δ-null region. For δ ≥ 0, we denote by S(δ) the δ-dilation of the support S, i.e., the255

set of voxels in S or in its δ-neighborhood. By definition, S ⊂ S(δ). We denote by256

N (−δ) the δ-erosion (inverse operation of a δ-dilation) of the null region N , implying257

that N (−δ) ⊂ N . From the definition of N we have immediately:258

N (−δ) = [p] \ S(δ) , (4)
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We refer to N (−δ) as the δ-null region. As shown in Fig. 1, we interpret the δ-null region259

as the subset of the covariates which are at a distance less than δ from the support260

covariates. We also give a practical example of the δ-null region in the case of real fMRI261

data in appendix in Fig. 14.262

Negative weight

Null weight 

Positive weight

-Null region (  = 2)

  -Null region frontier

Right hand side only:

Boths sides:

Figure 1: Spatial tolerance to false discoveries. Left: example of 2D-weight map, small
squares represent voxels. The map is sparse. Right: representation of the δ-null region for
the associated map with δ = 2. The covariates in the δ-null region are "far" from non-null
covariates, discoveries in this area are highly undesired. Discovering a null covariate "close"
to a non-null covariate is tolerated.

δ-Family Wise Error Rate (δ-FWER). If we have an estimate of the support263

Ŝ ⊂ [p], we recall that the Family Wise Error Rate (FWER) is defined as the probability264

of making a false detection [Hochberg and Tamhane, 1987]:265

FWER(Ŝ) = P(Ŝ ∩N 6= ∅) . (5)

Similarly, given δ ≥ 0 , we defined the δ-FWER to be266

δ-FWER(Ŝ) = P(Ŝ ∩N (−δ) 6= ∅) , (6)

i.e., the probability of making a detection at distance more than δ from the true support.267

The δ-FWER control is thus weaker than the FWER control, except when δ = 0 and268

when the true support is empty (i.e., N = [p]), in which case the δ-FWER coincides269

with the classical FWER.270

3.2 Thresholded SVR (Thr-SVR)271

In this section, we introduce Thresholded SVR (Thr-SVR), a procedure that thresholds272

uniformly the estimated SVR weight map, keeping extreme weights; this method corre-273

sponds to the most standard and simple approach to recover predictive patterns. The274

first step is to derive the SVR weights ŵSVR. Then, assuming that the estimated weights275
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of the null region are sampled from a given distribution centered on 0, the corresponding276

standard deviation σSVR can be approximated with the following estimator:277

σ̂SVR =

√√√√1
p

p∑
j=1

(ŵSVR
j )2 . (7)

We could also consider other estimators to approximate this quantity (e.g., Schwartzman278

et al. [2009]) but the former is simple and at worst biased upward when the support is279

not empty. Now, assuming a Gaussian distribution for the SVR weights in the null280

region, i.e., for j ∈ N :281

ŵSVR
j ∼ N

(
0, σ2

SVR

)
, (8)

we can produce (corrected) p-values by applying a Bonferroni correction. The produced282

p-values are at worst conservative under the two assumptions discussed in Section 6.283

In this procedure, the regression method considered is a linear SVR but similar results284

were obtained with other procedures (e.g., Ridge regression).285

3.3 Permutation Test SVR (Perm-SVR)286

Now, we introduce another uniform thresholding strategy of SVR weights based upon a287

permutation test procedure. To derive corrected p-values from a permutation test, we288

first regress the design matrix against the response vector using a linear SVR to obtain289

an estimate ŵSVR of the weights map similarly as made in the Thr-SVR procedure.290

Then, permuting randomly R times the response vector and regressing the design matrix291

against the permuted response by a linear SVR, we obtain R maps (ŵSVR,(r))r∈[R].292

We can now apply the Westfall-Young step-down maxT adjusted p-values algorithm293

[Westfall and Young, 1993, p. 116-117] taking the raw SVR weights instead of the usual294

t-statistics to derive the corrected p-values. A sufficient assumption to ensure the validity295

of the p-values is the pivotality of the SVR weights. Keeping the corrected p-values that296

are less than a given significance level —equal to 10% in this study— this procedure is297

equivalent to thresholding the SVR weight map. We call this procedure Permutation Test298

SVR (Perm-SVR). The only difference between Perm-SVR and the Thr-SVR procedure299

is the way of computing the threshold. To perform the permutation test procedure, we300

took R = 1000 permutations.301

3.4 Adaptive Permutation Threshold SVR (Ada-SVR)302

Here, we introduce Adaptive Permutation Threshold SVR (Ada-SVR), a statistical in-303

ference procedure that produces a weight map and confidence intervals around it; it is304

also almost equivalent to thresholding the SVR weights non-uniformly. Ada-SVR was305

first presented by Gaonkar and Davatzikos [2012]. First, the authors derived an esti-306

mated weight ŵAPT linearly related to the target by approximating the hard margin307

SVM formulation, their estimator is given by the following equation:308

ŵAPT = L y , (9)

9



where y is the target variable and L ∈ Rp×n only depends on the design matrix X:309

L = X>
[
(XX>)−1 − (XX>)−11(1>(XX>)−11)−11>(XX>)−1

]
, (10)

where 1 ∈ Rn is a vector of ones. The approximation made by (9) is notably valid under310

the assumption that all the data samples are support vectors, which might hold at least311

if n � p. Then, if y is standardized and if n is large enough (so that the central limit312

theorem holds), one expects that under the null hypothesis for the j-th covariate:313

ŵAPT
j ∼ N (0,

n∑
k=1

L2
j,k) . (11)

From (11), p-values can be computed and corrected by applying a Bonferroni correction314

(multiplying the raw p-values by a factor p).315

3.5 Ensemble of Clustered Desparsified Lasso Algorithm (EnCluDL)316

Data

EnsemblingDesparsified
 

     Lasso
 

Clustering #B

 

 
 

Clustering #1

Figure 2: Ensemble of Clustered Desparsified Lasso (EnCluDL) algorithm. The En-
CluDL algorithm combines three algorithmic steps: a clustering (or parcellation) procedure
applied to images, the Desparsified Lasso procedure (statistical inference) to derive statistical
maps, and an ensembling method that synthesizes several statistical maps. In the first step,
B clusterings of voxels are generated using B random subsamples of the original sample.
Then, for each grouping-based data reduction, a statistical inference procedure is run re-
sulting in B z-score maps (or p-value maps). Finally, these maps are ensembled into a final
z-score map using an aggregation method that preserves statistical properties.

Ensemble of Clustered Desparsified Lasso (EnCluDL) is a multivariate statistical317

inference procedure designed for spatial data; it was first introduced by Chevalier et al.318

[2018]. EnCluDL relies on three steps: a spatially-constrained clustering algorithm for319

reducing the problem dimension, a statistical inference procedure for deriving statistical320

maps, and an ensembling method for aggregating the statistical maps.321
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Statistical inference with Desparsified Lasso. Desparsified Lasso (DL) is a statis-322

tical inference procedure that can be viewed as a generalization of the least-squares-based323

inference in high dimension under sparsity assumptions. It was proposed and thoroughly324

analyzed by Zhang and Zhang [2014] and van de Geer et al. [2014]. This estimator pro-325

duces p-values on linear model parameters even when the number of parameters p is326

(reasonably) greater than the number of samples n. A technical description of Desparsi-327

fied Lasso is available in Sec. 7.1. In the neuroimaging context, the initial parameters are328

related to the voxels, which are of the order of one hundred thousand while the number329

of samples is almost always lower than one thousand. In such settings Desparsified Lasso330

is inefficient due to a lack of statistical power, hence dimension reduction is required.331

Clustering. As argued in Section 1, while performing dimension reduction, we aim at332

keeping the spatial structure of the data and avoid mixing voxels "far" from each other.333

This is achieved with data-driven parcellation along with a spatially constrained clus-334

tering algorithm following the conclusions by Varoquaux et al. [2012] and Thirion et al.335

[2014]. Another interesting aspect of this dimension reduction method is its denoising336

property [Hoyos-Idrobo et al., 2018] since it produces averages from groups of noisy vox-337

els. Note that this choice ultimately calls for a spatial tolerance on the statistical control,338

i.e., considering the δ-FWER instead of the standard FWER. Through the clustering,339

the p voxels are grouped into C clusters, where C � p. Then, Desparsified Lasso is340

directly applied to the compressed problem in order to produce corrected p-values. No-341

tably, corrected p-values are obtained from the initial p-values by applying Bonferroni342

correction [Dunn, 1961] with a factor C � p. Following the terminology in [Chevalier343

et al., 2018], we refer to this procedure as Clustered Desparsified Lasso (CluDL). CluDL344

however suffers from high variance [Chevalier et al., 2018] as it depends on an arbitrary345

grouping choice. This can be alleviated by ensembling techniques, as described next.346

Ensembling. Varoquaux et al. [2012], Hoyos-Idrobo et al. [2018] have shown that347

randomizing the grouping choice and adding an ensembling step to aggregate several348

solutions can stabilize the overall procedure. Additionally, Chevalier et al. [2018] have349

highlighted that the ensembling step is also beneficial in terms of support recovery. To350

perform B groupings of the covariates, we train the parcellations algorithm with B351

different random subsamples of the original data sample. Then, thanks to the CluDL352

procedure, we obtain B statistical maps that are aggregated into one through an en-353

sembling procedure. The ensembling procedure we considered in the statistical inference354

procedure is adapted from Meinshausen et al. [2009] that is described in appendix in355

Sec. 7.2. We refer to the full inference algorithm as Ensemble of Clustered Desparsified356

Lasso (EnCluDL). Under hypothesis ensuring Desparsified Lasso statistical properties357

—notably sparsity and smoothness of the true weight map and i.i.d. data samples—358

EnCluDL gives statistical guarantees, namely it controls the δ-FWER.359

Choosing δ for δ-FWER control Theoretically, the minimal spatial tolerance δ360

that guarantees a control of the δ-FWER with EnCluDL is the largest parcel diameter.361
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However, in practice, we aggregate many statistical maps obtained from different choices362

of voxel grouping; then the required spatial tolerance is reduced to the average radius.363

Then, the value of δ for which we observe the δ-FWER control varies approximately364

linearly with the cubic root of the average number of voxels per cluster. In standard365

fMRI settings, we propose the following formula for δ:366

δ0 =
(
p

2C

)1/3
, (12)

the ratio p/C being the average number of voxels per cluster, δ0 is a distance in voxel367

size unit.368

Note that the previous formula is an estimate of the average cluster radius that369

assumes that the shape of the clusters have identical cubic shape. In practice, this370

formula tends to underestimate the average cluster radius but was suitable in all our371

experiments. In Sec. 7.6, we study empirically the distribution of the cluster radius372

distribution as a function of the number of clusters, and compare it with δ0.373

Additionally, note that when the setting is particularly favorable for inference, e.g., if374

log(n)/C is large, the choice of δ given by (12) might be slightly too liberal. To address375

these specific cases, we propose a more refined formula to estimate δ in appendix in376

Sec. 7.5.377

EnCluDL hyper parameters. The number of clusters C is a crucial hyperparameter378

of EnCluDL. Generally, a suitable C depends on intrinsic physical properties of the379

problem and on the targeted spatial tolerance δ. Decreasing C increases the statistical380

power while reducing the spatial precision. In the neuroimaging context, taking C =381

500 is a fair default value achieving a suitable trade-off between spatial precision and382

statistical power when the number of samples is a few hundreds. With this choice, the383

spatial tolerance should be close to δ = 10mm when working with masked fMRI data.384

As a more adaptive approach, we recommend tuning C according to n e.g., C ∈385

[n/2, n]. This choice should still ensure the δ-FWER control with δ given by (12) (or its386

corrected version, see appendix Sec. 7.5) and is justified in Sec. 4.5.387

The parameter B, the number of CluDL solutions to be aggregated, is discussed in388

Sec. 3.5. The larger B the more stable the solution, yet the heavier the computational389

cost. In our experiments, we have set B = 25 (see Hoyos-Idrobo et al. [2018] for a more390

complete discussion on this parameter).391

Empirical analysis of data structure assumptions for EnCluDL. The core part392

of EnCluDL consists in applying Desparsified Lasso to a clustered version of the original393

problem. As disclaimed in van de Geer et al. [2014], some technical hypotheses on the394

structure of the design matrix X —i.e., of the reduced data— are necessary to produce395

valid confidence intervals on the parameters with Desparsified Lasso. Roughly, it is396

necessary that the features are "not too much correlated". In appendix in Sec. 7.3, we397

show in a simple setting that as long as the correlation between two predictive features398
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is less than 0.8, it is possible to recover both features. However when the correlation399

between features is more than 0.9, only one of the two features can be identified.400

In Sec. 7.4, we show that in standard fMRI datasets neighboring voxels can have401

a correlation greater than 0.9. Thus applying Desparsified Lasso at the voxel level402

certainly leads to many false negatives. However, since Desparsified Lasso is applied403

to the clustered problem, we have to consider correlation between clusters instead. In404

Sec. 7.4, we show on HCP data that such inter-cluster correlation is almost always405

lower than 0.8 and always lower than 0.85. This means that data structure assumptions406

for EnCluDL are sustainable. Additionally, the fact that EnCluDL aggregates several407

CluDL solutions increases the tolerance to inter-cluster correlation.408

3.6 A complementary univariate solution409

Given the complementarity of univariate and multivariate inference noted previously, we410

add to our study a univariate inference method, namely univariate permuted OLS (Univ-411

OLS). This method does not test the same null hypothesis as the other methods: it tests412

whether or not a voxel is marginally associated with the target. Then, while it should413

not be benchmarked with the other methods, we propose to consider jointly the results414

obtained by the marginal and the conditional analyses, as advocated by Weichwald et al.415

[2015].416

The Univ-OLS method is based on the generalized linear model (GLM) [Friston et al.,417

1994]. For every voxel we compute a t-statistic by applying the OLS procedure on the418

linear model that associates each voxel with the target. Subsequently, we also derive the419

permuted t-statistic distribution by performing the OLS on permuted data. Finally, to420

obtain corrected p-values, we use the standard maxT procedure [Westfall and Young,421

1993]. Note that, for this method, we have used the permuted_ols function implemented422

in the Nilearn python package [Abraham et al., 2014] with 1000 permutations.423

3.7 Implementation424

The Python code that implements Thr-SVR, Perm-SVR, Ada-SVR and EnCluDL can be425

found on https://github.com/ja-che/hidimstat. Our algorithms are implemented426

with Python = 3.6.8 and need the following packages Numpy = 1.16.2 [Van der Walt427

et al., 2011], Scipy = 1.2.1 [Virtanen et al., 2020], Scikit-Learn = 0.21 [Pedregosa et al.,428

2011], Joblib = 0.11 and Nilearn = 0.6.0 [Abraham et al., 2014].429

4 Experimental procedures430

4.1 Data431

To validate empirically the statistical guarantees of the four algorithms —Thr-SVR,432

Perm-SVR, Ada-SVR and EnCluDL— described in Section 3, we perform several ex-433

periments on resting-state fMRI and task fMRI data. We also show some results for434

Univ-OLS to highlight the complementarity of univariate and multivariate analyses, in435
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particular when studying predictive patterns on real data. We focus on three datasets:436

HCP900 resting-state fMRI, HCP900 task fMRI and RSVP task fMRI.437

HCP900 resting-state fMRI data. HCP900 resting-state fMRI dataset [Van Essen438

et al., 2012] contains 4 runs of 15 minutes resting-state recordings with a 0.76s-repetition439

time (corresponding to 1200 frames per run) for 796 subjects. We use the MNI-resampled440

images provided in the HCP900 release. For this dataset the number of samples is equal441

to 1200 (only one run is used) and the number of voxels is 156 374 after gray-matter442

masking (the spatial resolution being 2mm isotropic).443

HCP900 task fMRI data. We also use the HCP900 task-evoked fMRI dataset [Van444

Essen et al., 2012], in which we take the masked 2mm z-maps of the 796 subjects445

from 6 tasks to solve 7 binary classification problems: emotion (emotional face vs shape446

outline), gambling (reward vs loss), language (story vs math), motor hand (left vs right447

hand), motor foot (left vs right foot), relational (relational vs match) and social (mental448

interaction vs random interaction). We consider the fixed-effect maps for each outcome449

(or condition), yielding one image per subject per condition (which corresponds to two450

images per subject for each classification problem). Then, for each problem, the number451

of samples available is 1592 (= 2 × 796) and the number of voxels is 156 374 after452

gray-matter masking.453

Unmasked RSVP task fMRI data. We also use activation maps obtained from454

a rapid serial visual presentation (RSVP) task of the individual brain charting dataset455

[Pinho et al., 2018], augmented with 9 additional subjects performing the same task,456

under the same experimental procedures and scanning parameters. No masking is used457

for this dataset, so that out-of-brain voxels are not withdrawn from preprocessing. We458

consider the unmasked 3mm-resolution statistical z-maps of the 6 sessions of the 21 sub-459

jects for a reading task with 6 different contrasts that have been grouped into 2 classes:460

language (words, simple sentences, complex sentences) vs pseudo-language (consonant461

strings, pseudo-word lists, jabberwocky). The images are all registered to MNI space and462

per-condition effects are estimated with Nistats v0.0.1 library [Abraham et al., 2014].463

For this dataset the number of samples available is equal to 756 (21 subjects×6 runs×6464

images per run) and the number of voxels is 173 628 (unmasked images resampled at465

3-mm resolution). We run the inter-subject experiment described in Sec. 4.4 with this466

dataset.467

4.2 Statistical control on semi-simulated data468

A first series of experiments study whether the four different methods exhibit the ex-469

pected δ-FWER control and are competitive in terms of support recovery, as measured470

with the precision-recall curve. To do so, we have to construct the true weight map w∗.471

We generate “semi-simulated” data: generating signals from estimates on real data. To472
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avoid circularity in the definition of the ground truth, we used two different tasks: one473

to build w∗ and another one to define X.474

Building a reference weight map from HCP900 motor hand dataset. To con-475

struct an underlying weight map, we use the motor hand (MH) task of the HCP900 task476

fMRI dataset described in Sec. 4.1. Specifically, we build a design matrix XMH ∈ Rn×p477

from the motor hand task z-maps of all subjects associated with a binary target index478

yMH. To obtain an initial weight map wSVC
MH we regress XMH against yMH by fitting479

a linear Support Vector Classifier (SVC) [Cortes and Vapnik, 1995]. From wSVC
MH we480

only kept the 10% most extreme values ensuring that the connected groups of non zero-481

weight voxels have a minimal size of 1 cm3 by removing small clusters. We chose this482

map (represented in Fig. 3 and Fig. 4) to be the true weight map w∗ ∈ Rp for the whole483

simulated experiments.484

Figure 3: Generating a hybrid dataset
with known ground truth and actual
fMRI data. To generate the response
for a given sample we multiply the cor-
responding brain activation map by the
true weight map and add a Gaussian
noise with fixed variance. To highlight
the predictive regions, we circle them in
pink for positive coefficients and in light
blue for negative coefficients. As an il-
lustration, we take four different data
samples with negative or positive out-
put value.

-3.9

-1.1

0.2

2.2

Data: True weight map: * *

*+

Signal: 

Noise:  Response:

Simulating responses with HCP900 emotion dataset. We then take X to be485

the set of z-maps from the emotion task of the HCP900 task fMRI dataset described in486

Sec. 4.1. To generate a continuous response vector y, we draw a Gaussian random noise487

vector ε ∼ N (0, σ2
εIn) and use the linear model introduced in (1), where σε = 0.2 to488

reach SNRy = 10, where SNRy is given by:489

SNRy = ‖X w∗‖2

nσ2
ε

. (13)

The way we simulate y is summarized in Fig. 3.490
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Quantification of error control and detection accuracy. To obtain representa-491

tive results, we then run the procedures described in Section 3 for 100 different response492

vectors y generated from different random samples of subjects and different draws of ε.493

We let the number of samples vary from n = 50 (25 random subjects taken among the494

796) to n = 1200 (600 subjects), the number of voxels being p = 156 374. For each sim-495

ulation, we record the empirical δ-FWER and the precision-recall curves. Importantly,496

we do not recommend running such analysis with n < 100, since the estimation problem497

is hard and statistical guarantees are only asymptotic.498

Heavy-tailed version of the semi-simulated experiment. In the above experi-499

ment the noise is Gaussian, hence we also benchmark the inference procedures for Laplace500

and Student noise to assess the impact of noise distribution.501

Binary version of the semi-simulated experiment. In the main experiment the502

response vector y is continuous, hence we also benchmark the inference procedures for a503

binary response. For that, we simply take as response vector the signs of the continuous504

y generated as in the previous paragraph.505

Univ-OLS solves another inference problem. Univariate methods do not compete506

with multivariate methods, as they do not test the same null hypotheses. However, for507

pedagogical purpose, we show that Univ-OLS based FWER control is not valid in the508

multivariate analysis setup.509

4.3 Statistical control under the global null with i.i.d. data510

In this experiment, we test whether the procedures control the FWER under a global511

null model. EnCluDL only controls the δ-FWER theoretically but, when the true weight512

vector w∗ is null, the δ-FWER and the classical FWER are identical. Then, all pro-513

cedures should control the FWER. Here, we considered the tasks of the HCP900 task514

fMRI dataset described in Sec. 4.1 keeping all the subjects (n = 1592). Then, to get515

a noise-only response, we (uniformly) randomly permute the original response vector.516

Similarly as in Sec. 4.2, the i.i.d. hypothesis is legitimate, since the data correspond to517

z-maps of different subjects. For each task, we draw 100 different permutations of the518

response and check if the different methods enforce the chosen nominal FWER of 10%.519

to illustrate the importance of checking the underlying assumptions, in appendix in520

Sec. 7.8, we describe an additional experiment to show that FWER (or δ-FWER) is not521

controlled anymore when working with an autocorrelated response vector, breaking the522

i.i.d hypothesis. This experiment is adapted from Eklund et al. [2016].523

4.4 Statistical control of out-of-brain detections524

In this experiment we test the four procedures on an unmasked task fMRI dataset to525

verify that no spurious detection is made outside of the brain —up to the allowed error526

rate. Indeed, the non-null coefficients of the weight vector w∗ should all be contained527
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in the brain since there is no informative signal in out-of-brain voxels. To do so, we528

take the unmasked RSVP task fMRI dataset, described in Sec. 4.1 (with design matrix529

X containing n = 756 unmasked z-maps). Then, we report how frequently some voxels530

are detected outside the brain volume. For the sake of completeness, we also check the531

non-occurrence of out-of-brain detections with Univ-OLS.532

4.5 Insights on the choice of number of clusters533

In this experiment, we assess empirically the impact of C, the number of clusters used in534

the EnCluDL algorithm. We use the same generative method as in Sec. 4.2 to produce535

an experiment with known ground truth. Then, we run the EnCluDL algorithm varying536

the numbers of clusters C from C = 200 to C = 1000. We also vary the number of537

samples n from 100 to 1200. As in Sec. 4.2, we run the experiment for 100 different538

response vectors and report aggregated results. We report two statistics: the empirical539

δ-FWER and the AUC of the precision-recall curve for every value of C and n.540

4.6 Face validity on HCP dataset541

In this experiment, we consider the output of the procedures in terms of brain regions542

that are conditionally associated with the task performed by the subjects. Similarly as543

in Sec. 4.3, we consider the tasks of the HCP900 task fMRI dataset described in Sec. 4.1,544

keeping this time the true response vector. We run all the procedures on every task and545

report the statistical maps thresholded such that the FWER < 10% or the δ-FWER <546

10% (for EnCluDL). For this, we use all the available samples (n = 1592). We also547

include Univ-OLS to compare the discriminative patterns obtained with a univariate548

inference.549

4.7 Prediction performance550

Even if it is not the purpose of this study, we also checked the prediction performance of551

the decoders produced by each method. Since Thr-SVR and Perm-SVR rely on the same552

predictive function, there are three different decoders: SVR, Ada-SVR and EnCluDL.553

To perform this experiment, we consider the tasks of the HCP900 task fMRI dataset554

described in Sec. 4.1. We run all the procedures on every task using a sample size555

n = 400, keeping the rest of the samples to test the trained model. For each task and556

each method, we take 100 different random subsamples to produce the results. This557

experiment being a side study, we give the results in appendix in Sec. 7.12.558

5 Results559

In this section, after setting the value of the tolerance parameter δ in the different560

datasets, we present the experimental results.561
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5.1 Estimating δ in HCP and RSVP datasets562

In all the experiments, unless specified otherwise, we run EnCluDL with the default563

choice C = 500. Reversing (12), we obtain a tolerance parameter of δHCP = 5.4 voxels564

for HCP900 and δRSVP = 5.6 voxels for RSVP, corresponding to δHCP = 12mm and565

δRSVP = 18mm respectively after rounding up. In Fig. 14 in appendix, we display the566

spatial tolerance of 6 voxels in the case of HCP data.567

5.2 Statistical control with known ground truth568

Here, we describe the results obtained from the experiment described in Sec. 4.2.569
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Figure 4: Qualitative comparison of the model solutions. Here, we show the solutions
(z-maps) given by the four inference procedures, for a single random draw of the noise
vector in the experiment described in Sec. 4.2. The weight maps are thresholded such
that δ-FWER < 10% theoretically. We can observe that none of the methods yield false
discoveries but the Ensemble of Clustered Desparsified Lasso (EnCluDL) procedure is the
most powerful followed by Adaptive Permutation Threshold SVR (Ada-SVR).

Qualitative comparison of the model solutions. In Fig. 4, we present a qualitative570

comparison of the model solutions when n = 400. None of the methods yields false571

discoveries for the chosen threshold —taken such that δ-FWER < 10%. EnCluDL572

recovers more active regions than the other procedures, which makes it the most powerful573

procedure, followed by Ada-SVR. The other two procedures do not discover the expected574

patterns. These results displayed are obtained for a single random draw of the noise575

vector, but similar results holds for different draws.576

δ-FWER control. In this experiment, we check if Thr-SVR, Perm-SVR, Ada-SVR577

and EnCluDL control the δ-FWER at the targeted nominal level (here being 10%). Fig. 5578

shows that Perm-SVR and EnCluDL procedures control the δ-FWER for all sample sizes579

since their empirical δ-FWER remain below the targeted nominal level, whereas Thr-580

SVR and Ada-SVR fail to control the δ-FWER in every setting. In particular, the581

empirical δ-FWER for Ada-SVR is above the targeted nominal level for n ≥ 800. This582

might occur since the approximation made by (9) is valid only if n remains “sufficiently583

low” [Gaonkar and Davatzikos, 2012]. Thr-SVR fails to control empirically the δ-FWER584

for any value of n. This might be due to the two assumptions made in Sec. 3.2 not being585

satisfied —it is indeed unlikely that the SVR weights of the null region follow the same586
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distribution. We further discuss this point in Section 6. Concerning EnCluDL, one can587

notice that the empirical δ-FWER is slightly larger for n = 1200, this effect is explained588

in appendix in Sec. 7.5 and Sec. 7.6. We report additional results, notably heavy-tailed589

and binary version of the experiment, in appendix in Sec. 7.10. These lead to the same590

statistical behavior as observed here.591
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Figure 5: δ-FWER control and precision-recall curve on semi-simulated data (known
ground truth). Left: The results of the experiment described in Sec. 4.2 show that the
permutation test (Perm-SVR) and Ensemble of Clustered Desparsified Lasso (EnCluDL) are
the only procedures that correctly control the δ-FWER at the nominal level (10%). This
is not the case for Adaptive Permutation Threshold SVR (Ada-SVR) and Thresholded SVR
(Thr-SVR) procedures. Right: For the same experiment, EnCluDL has the best performance
in terms of precision-recall curve. For n = 400, and ensuring 90% precision, EnCluDL
obtains a recall of 23% and Ada-SVR a recall of 16%. Thr-SVR and Perm-SVR share the
same precision-recall curve and were not able to reach 90% precision.

Precision-recall. In this experiment, we also evaluate the recovery properties of the592

four methods by comparing the precision-recall curve for different value of n. Fig. 5593

shows that EnCluDL has the best precision-recall curve for n = 400. We recall that594

the perfect precision-recall curve is reached if the precision is equal to 1 for any value595

of recall between 0 and 1. Similar results were obtained for the other sample sizes596

tested (appendix Fig. 17). Indeed, when n = 400, for a 90% precision, EnCluDL gives597

a recall of 23% and Ada-SVR a recall of 16%. Thr-SVR and Perm-SVR share the same598

precision-recall curve since they both produce p-values arranged in the reverse order of599

the absolute SVR weights. These thresholding methods were not able to reach the 90%600

precision; their recovery properties are much weaker.601

We report additional results in Sec. 7.10.602

5.3 Statistical control under the global null with i.i.d. data603
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Figure 6: FWER control under the global null with i.i.d. data The results of the ex-
periment with i.i.d. data under the global null, described in Sec. 4.3, show that, only the
Thresholded SVR (Thr-SVR) fails to control the FWER empirically in this context. EnCluDL
makes no detection: it is a conservative approach, as one could expect from theory.

FWER control under the global null (permuted response). Here, we summa-604

rize the results of the experiment testing control of the FWER in a global null setting605

(Sec. 4.3). Fig. 6 shows that, when samples are i.i.d., all the procedures control the606

FWER, except Thr-SVR. EnCluDL is even conservative since the empirical FWER re-607

mains at 0 for all the different tasks tested. This result is not surprising since at least608

two steps of the EnCluDL procedure are conservative: the Bonferroni correction and the609

ensembling of the p-values maps.610

Face validity (original response). Additionally, we run the procedures with the611

original (not permuted) response vector to check whether the methods can recover pre-612

dictive patterns; this corresponds to the experiment described Sec. 4.6. We plot the613

results for the two first tasks (emotion and gambling) in Fig. 7; see appendix Fig. 23614

for the five other tasks. Qualitatively, EnCluDL recovers the most plausible predictive615

patterns, Ada-SVR sometimes makes dubious discoveries: patterns are too wide and616

implausible. The two other methods exhibit a very weak statistical power.617

Comparing EnCluDL and Univ-OLS solutions, we see that the discovered patterns618

are not a subset of each other. This result was expected given the arguments in Weich-619

wald et al. [2015]: the advantage of combining the two paradigms is to get more insight620

on the causal nature of the relation between the voxel signals and the target.621
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Figure 7: Estimated predictive patterns on standard task fMRI dataset. Here, we
plot the results for the emotion and gambling tasks of the experiment described in Sec. 4.6
thresholding the statistical maps such that the δ-FWER stays lower than 10% for δ = 12mm.
Qualitatively, EnCluDL discovers the most plausible patterns, Ada-SVR sometimes makes
dubious discoveries, patterns are too wide and implausible, while the two other methods
exhibit a very weak statistical power. Univariate analysis results obtain with Univ-OLS
clearly provide distinct information about the relationship between the voxel signals and the
outcome. The results of the five other tasks are available in Fig. 23.
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Figure 8: Statistical maps for unmasked RVSP data. The results of the unmasked
task-fMRI experiment, described in Sec. 4.4, show that EnCluDL, Thresholded SVR (Thr-
SVR) and the permutation test (Perm-SVR) do not return out-of-brain discoveries, while the
Adaptive Permutation Threshold SVR (Ada-SVR) does. Here z-score maps are thresholded
such that the δ-FWER is at most 10% for δ = 6 voxels (or 18mm). Thr-SVR and the
Perm-SVR do not yield spurious detections but very few detections are made, hence these
method have low statistical power. EnCluDL does not make any spurious detection; rather
it makes detections in the temporal lobe and Broca’s area, which are expected for a reading
task. Univ-OLS does not make any out-of-brain detection either but returns significant
associations in the temporal lobe.

5.4 Statistical control of out-of-brain discoveries622

We now report the results from the unmasked RSVP task data experiment (Sec. 4.4).623

Here, we check whether out-of-brain detections are made. In Fig. 8, the z-score maps624

are thresholded such that the FWER (for Perm-SVR, Thr-SVR, and Ada-SVR) or the625

δ-FWER (for EnCluDL) are at most 10% for δ = 6 voxels (or 18mm). We observe626

that Ada-SVR makes some out-of-brain discoveries, and it does not control the FWER627

empirically. Thr-SVR and Perm-SVR do not yield spurious detections but very few628

detections are made, hence these methods have low statistical power. EnCluDL does629

not make any out-of-brain detections and it outlines predictive regions in the temporal630

lobe and Broca’s area, expected for a reading task. Finally, Univ-OLS does not make631

any spurious detection either; it only makes detections in the temporal lobe.632

5.5 Insights on choosing the number of clusters633

Here, we report the results obtained of the experiment task-fMRI data (Sec. 4.5) study-634

ing the impact of C (number of clusters) on the δ-FWER control and the recovery635
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Figure 9: Influence of the number C of clusters on δ-FWER control and the recovery
properties of EnCluDL. The results of the experiment described in Sec. 4.5 show the impact
of C on the δ-FWER control and the recovery score of EnCluDL. When C ≥ 500, clusters
are smaller, hence the δ-FWER is controlled for δ = 12mm (and potentially lower values of
δ) since all the empirical δ-FWER’s are lower than the 10% nominal rate. Conversely, when
C < 500, clusters are wider and the spatial tolerance is overcome by the model inaccuracy,
hence the δ-FWER is not controlled for δ = 12mm. However, it remains controlled for
higher values of δ. Concerning the recovery properties we see that reducing the number of
clusters improves the precision-recall curves. Thus, the more spatial uncertainty is tolerated,
the best recovery properties EnCluDL offers.

properties of EnCluDL for various sample sizes. These results are obtained with 100636

repetitions for every sample and cluster sizes. In Fig. 9, we notice that a lower C leads637

to improved recovery, according to the area under the precision-recall curves, for δ = 6638

voxels (or 12mm). However, when the number of cluster is lower, the average cluster639

radius increases and overcomes the spatial tolerance of δ, leading to inflated error rates640

(cf. Sec. 7.6). More precisely, the δ-FWER is controlled when C ≥ 500. Note that for641

C < 500, it is possible to control the δ-FWER, even when n is small, provided a larger642

spatial tolerance δ > 6 voxels. To compute the requested δ, one can use (12). Besides,643

we observe that the recovery score of EnCluDL improves when n increases, as expected.644

We also notice that the empirical δ-FWER increases with n. To explain this effect, we645

first recall that theoretically the δ-FWER is controlled for δ equal to the largest cluster646

diameter, likely to be too large in practice. In this study, we have taken δ equal to δ0,647

which is slightly smaller than the average radius of the clusters (cf. Sec. 7.6), since in648

practice this choice ensures the δ-FWER control. However, when the setting is particu-649

larly favorable for inference (e.g., if log(n)/C > 1.5 × 10−2), some false discoveries can650

be made at a distance greater than the average radius from the support. The choice of δ651
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is further discussed in Sec. 3.5 and in appendix in Sec. 7.5. Additionally, we can notice652

from Fig. 9 that for a fixed C/n ratio the recovery capability is stable (see also appendix653

Sec. 7.9). Then, as discussed in Sec. 3.5, we advise taking C of the same order as n654

(e.g., C ∈ [n/2, n]) when the goal is to recover most of the predictive regions without655

strict requirements on the accuracy of their shapes —since the value of δ given by (12)656

might be not small with regards to the predictive region itself.657

6 Discussion658

Decoding models are fundamental for causal interpretation of the implication of brain659

regions for an outcome of interest, mental process or disease status [Weichwald et al.,660

2015]. They produce weight maps that are needed to support this type of inference661

[Poldrack, 2011, Varoquaux et al., 2018]. These weight maps capture how brain regions662

relate to the outcome, conditional on the other regions, which is a key difference with re-663

spect to standard brain mapping based on mass univariate models. However, the weight664

maps produced by the common decoders come without statistical guarantees. Indeed,665

decoders optimize the quality of their prediction, but give no control on conditional666

feature importance. This is difficult due to the large number of covariates —voxels—667

as well as the severe multi-collinearity: voxel-level inference is untenable. On the other668

hand, given the spatial structure of the data, a spatial tolerance in the statistical control669

is natural, as in Gaussian random field theory used in standard analysis [Nichols, 2012].670

Our first contribution is to formalize this spatial statistical control by introducing671

the δ-FWER, a control of false discoveries up to a spatial slack δ. This definition uncov-672

ers a fundamental trade-off between accuracy in the localization of the brain structures673

involved and statistical power: here we deliberately degrade spatial accuracy, acknowl-674

edging current concerns on statistical power in neuroimaging studies [Button et al., 2013,675

Noble et al., 2019].676

Our second contribution is to study empirically the statistical control of four pro-677

cedures computing decoding maps, ranging from thresholding procedures applied to678

SVR weights, to a dedicated decoding procedure, EnCluDL. Experiments show that the679

Thr-SVR procedure, thresholding SVR weights, fails to achieve useful statistical con-680

trol. Exact permutation testing yields the expected statistical control but with very681

poor statistical power for all experimental settings we have studied. On the other hand,682

Adaptive Permutation Threshold SVR (Ada-SVR) [Gaonkar and Davatzikos, 2012], does683

not control the FWER as it should, though it exhibits a fair precision-recall curve in684

our semi-simulated experiments. This shows how difficult it is to identify a statistically685

valid threshold for SVR weight maps. This is due to the fact that under the null hypoth-686

esis, estimated weights are not distributed according to a fixed distribution —notably687

because of the dependency structure of the data— and more precisely, the variance of688

these distributions differs. Then, thresholding linear decoders (SVR, logistic regression)689

based on their estimated weights amplitudes is not a principled approach to control false690

discoveries.691

EnCluDL uses a different decoding procedure to estimate the weight maps [Chevalier692
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et al., 2018], and as a result comes with theoretical statistical guarantees: it controls693

the δ-FWER for a predetermined tolerance parameter δ equal to the largest diameter694

of the clusters, assuming that the observed samples are i.i.d. and that the weight maps695

are homogeneous and sparse. The experiments show that, indeed, for i.i.d. scenarios,696

EnCluDL controls the δ-FWER for δ equal to the average radius of the clusters. Though,697

in some very high SNR or high sample size regimes, it might be necessary to take δ larger698

than the average radius (see Sec. 7.5). In practice, our choice of δ is conservative, and699

with current fMRI datasets, δ-FWER control holds for smaller δ, even in relatively large700

cohorts (n = 1200).701

In our experiments, the spatial tolerance is around 1cm. Given that the definition702

of spatial location is blurred by inter-subject variability in group studies, this tolerance703

does not seem problematic. The method can thus be used for inference in cognitive704

neuroscience and population studies in psychiatry, neurology or epidemiology.705

In addition, EnCluDL exhibits the best support recovery performance in the pro-706

posed semi-simulated experiments with fMRI data but also finds patterns with good707

face validity in more qualitative experiments plotted in Fig. 7. On the other hand, we708

also notice that EnCluDL tends to be over-conservative. Taking into account the diffi-709

culty of the problem and the fact that the convergence results are only asymptotic, we710

do not recommend using EnCluDL with n < 100.711

In the present study, we have considered that the confounding variable effects have712

been removed during fMRI data preprocessing. However, it is still possible to include an713

additional confounding variable to the covariates before performing the inference. With714

regards to EnCluDL, we note that confounding variables should be handled separately715

from the clustered brain features.716

Although it is not the main purpose of this study, we also checked the prediction717

performance of the decoders produced by each method. It is important to note that718

EnCluDL has been designed for the recovery of conditional statistical associations, not719

for prediction. In practice, the prediction performance is almost the same for SVR and720

Ada-SVR, and is slightly better than the one of EnCluDL (see Fig. 24). For prediction721

purpose, we recommend using Fast Regularized Ensembles of Models (FReM) [Hoyos-722

Idrobo et al., 2018], which is a stable and computationally efficient decoder with state-723

of-the-art prediction performance.724

For pedagogical purpose, we have also considered a dataset where cross-sample in-725

dependence is violated due to serial correlation, reproducing an experiment of Eklund726

et al. [2016]. The ensuing loss of statistical control underlines the importance of the727

i.i.d. hypothesis. Hence, EnCluDL should not be used to make inference from intra-728

subject dataset recorded over one session. With these warnings in mind, we think that729

EnCluDL can be used safely in neuroimaging context. Our code, implemented with730

Python 3, can be found on https://github.com/ja-che/hidimstat along with some731

examples.732

We have not considered the method proposed by Nguyen et al. [2019] based on the733

Knockoff filters [Barber and Candès, 2015, Candès et al., 2018] that yet appear to be an734

appealing procedure, as it can only control the FDR. In this study we have focused on735
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δ-FWER control, and hence defer the analysis of FDR-controlling procedures to future736

work. Also, we have not benchmarked post-selection inference procedures [Lee et al.,737

2016, Berk et al., 2013], as we found them challenging to run in high dimensional settings738

and prone to numerical underflows.739

Our empirical results clearly show that standard thresholding procedures, including740

classical permutation tests, are not reliable to infer regions importance on decoder maps,741

due to the high number of covariates. Since, in neuroimaging studies, these maps are742

used to give evidence on the brain regions that supports an outcome, it is crucial to use743

a procedure with statistical control on the brain maps. Our study shows that EnCluDL744

provides such a control.745
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7 Appendix962

7.1 Desparsified Lasso963

Additional notation. For a matrix X, Xi,· refers to the i-th row and X·,j to the j-th964

column, Xi,j refers to the element (i, j), and X(−j) refers to the matrix X without the965

j-th column. X† denotes the Moore-Penrose pseudo-inverse of X.966

Small-dimension insight. The Desparsified Lasso procedure, introduced by Zhang967

and Zhang [2014] extends the Ordinary Least Squares (OLS) procedure to n < p cases.968

Let us first recall the standard OLS framework (n > p). Starting from model (1), let us969

define zj ∈ Rn the residual of the OLS regression of X·,j versus X(−j) given by:970

zj = X·,j −X(−j)ŵ(−j) , (14)

where ŵ(−j) refers to the estimator of the OLS regression of X·,j versus X(−j). In971

particular, z>j X·,k = 0 for all k ∈ [p] \ {j}. In this setting, we also have the following972

result:973

Proposition 7.1. If n > p and rank(X) = p, then, for all j ∈ [p]:974

ŵOLS
j =

z>j y
z>j X·,j

, (15)

where ŵOLS is the parameter vector estimates obtained from the OLS regression of y975

against X.976

32



Desparsified Lasso. In this setting, it is not possible to construct a non-zero vector977

family {zj , j ∈ [p]} (i.e., a family verifying zj 6= 0 for all j ∈ [p]), such that z>j X·,k = 0978

for all k 6= j. The idea proposed by Zhang and Zhang [2014] is to construct a family979

{zj , j ∈ [p]} which would play the same role as the residual of the OLS regression of X·,j980

versus X(−j) in (14) but relaxing (slightly) the constraint z>j X·,k = 0. To do so, instead981

of computing {zj , j ∈ [p]} by OLS regression, they proposed to take the residual of the982

Lasso regressions1 of X·,j against X(−j). Then, from (1), one can derive the following:983

z>j y
z>j X·,j

= w∗j +
z>j ε

z>j X·,j
+
∑
k 6=j

z>j X·,kw∗k
z>j X·,j

. (16)

Noticing that the second term in (16) is a noise term and plugging in an initial estimator984

ŵ(init) of w∗ in the third term —a standard choice being the Lasso— they propose the985

following estimator:986

ŵj =
z>j y

z>j X·,j
−
∑
k 6=j

z>j X·,kŵ
(init)
k

z>j X·,j
. (17)

Here, one can notice that (17) generalizes (15) to n < p. Then, from (16) and (17) one987

can derive:988

σ−1
ε (ŵj −w∗j ) = σ−1

ε

z>j ε
z>j X·,j︸ ︷︷ ︸
ηj

+σ−1
ε

∑
k 6=j

z>j X·,k
z>j X·,j

(w∗k − ŵ(init)
k )

︸ ︷︷ ︸
µj

. (18)

This yields:989

σ−1
ε (ŵ−w∗) = η + µ, η ∼ Np(0,Ω) , (19)

where:990

Ωjk =
z>j zk

(z>j X·,j)(z>k X·,k)
. (20)

Asymptomatically and under some sparsity assumptions (one can refer to [Dezeure et al.,991

2015] for more details), one can neglect the last term µ and obtain:992

σ−1
ε (Ωjj)−1/2(ŵj −w∗j ) ∼ N (0, 1) . (21)

From (21), one can compute the confidence intervals and p-values of the coefficients of993

the estimated weight map. Note that similar estimators have been derived in parallel in994

Javanmard and Montanari [2014].995

1From our analysis, taking λj , the regularization parameter used in the Lasso regression of X·,j
against X(−j), equal to 0.01 × maxk∈[p]\{j} |X>·,jX·,k|/n is appropriate to compute zj . Empirically, it
results in a more conservative solution than the one proposed by Zhang and Zhang [2014] but it avoids
doing computationally expensive grid-search.
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7.2 Adaptive quantile aggregation of p-values996

For the j-th voxel, we have a vector (p(b)
j )b∈[B] of p-values, with one p-value computed

for each of the B clusterings. Then, the final p-value of the j-th feature is given by the
adaptive quantile aggregation, as proposed by Meinshausen et al. [2009]:

pj = min

(1− log(γmin)) inf
γ∈(γmin,1)

(
γ-quantile

{p(b)
j

γ
; b ∈ [B]

})
, 1

 ,

where we have taken γmin = 0.20 in our experiments. Taking a value of γmin not too997

small (e.g., γmin ≥ 0.20) ensures that the discovered sources have received small p-values998

many times (e.g., at least for B/5 different choices of clustering).999

7.3 Empirical analysis of data structure impact1000

In this section, we propose two simulations to gain more insight concerning the assump-1001

tions about data structure that are necessary for Desparsified Lasso and EnCluDL to1002

have power. More precisely, we investigate up to which level of correlation two corre-1003

lated predictive features (having non-zero weight) are both identified. Indeed, when two1004

predictive features are highly correlated, there is a risk that the inference procedure only1005

detects one of the two.1006

The first simulation has modest data dimension, which corresponds to that of data1007

after clustering. We use it to analyze the behavior of Desparsified Lasso. The second1008

simulation has a 2D structure with larger data dimension, it introduces short- and long-1009

range correlation structure, it is used to study EnCluDL.1010

First simulation: approximating the clustered data setting. In this simulation1011

we set n = 100 and p = 500. We construct the design matrix X such that features are1012

normally distributed and the first two features have a correlation equal to parameter ρ,1013

while all the other features are independent. The weight w∗ is such that w∗j = 1 for1014

1 ≤ j ≤ 10 and w∗j = 0 otherwise. We also set σε = 1 giving approximately SNRy = 121015

close to the SNR estimated in real fMRI datasets.1016

To check the ability of Desparsified Lasso to identify two correlated features, we1017

compare the smallest z-score of the first two first features (“correlated features”) with the1018

smallest z-score of the two following features (“control features”) for different value of ρ ∈1019

(0, 1). While the minimum z-score of the control features should not vary significantly1020

and corresponds to a control value, the minimum z-score of the two correlated features1021

should decrease towards 0 when ρ increases to 1. Also, we look at the z-score of a random1022

non-predictive feature (“random null feature”) to get insight about the z-score threshold1023

value to declare a feature significant.1024

First simulation results. In Fig. 10, we give the results for the first simulation.1025

When the correlation of the two correlated features increases, their identification using1026

the Desparsified Lasso procedure becomes harder. In this experiment, we observe that1027
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Figure 10: Impact of correlation when trying to identify two correlated features. Left:
We plot the Desparsified Lasso estimator and its 95% confidence intervals. The correlation
between the first two features is set to ρ, while the other features are uncorrelated. The
higher ρ the harder it is to identify each of the two correlated features. For ρ = 1.0, it
is impossible, while for ρ = 0.8, the identification of both features is successful. Right:
Quantitative summary of the simulations. When the correlation increases the minimum z-
score of the two first features (“correlated features”) decreases (90% confidence intervals also
displayed). The correlation between the two following features (“control features”) remains
equal to zero, thus the minimum z-score of these features is used as a control value that
should not vary significantly. Also we plot the z-score of a random non-predictive feature
(“random null feature”). We observe that for a correlation lower than 0.8 the deviation is
limited and it is possible to identify the two correlated variables. For a correlation larger
than 0.9 the deviation is massive and it becomes impossible to recover the two correlated
variables.

below a correlation of 0.8, Desparsified Lasso can identify accurately the two correlated1028

variables. However, above a correlation of 0.9, Desparsified Lasso might fail to recover1029

the both correlated variables.1030

Second simulation: 2D data structure. The simulation we consider has a 2D data1031

structure. It aims at approximating the short- and long-range correlation structure that1032

can be observed in fMRI data (see Sec. 7.4). The feature space considered is a square1033

with edge length H = 40, then p = H2 = 1 600 features and we took n = 100 samples.1034

To construct w∗, we define a 2D weight map w̃∗ of size H ×H with four active regions1035

then we flatten w̃∗ in a vector w∗ of size p. Each active region is a small square of width1036

h = 4, leading to support of size 4× h2 = 64. The four active regions are located in the1037

corners of the weight map. The true weight map is represented in Fig. 11. To construct1038
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Figure 11: Impact of correlation when trying to identify two correlated regions. Left:
True weight map, and z-scores estimated by Desparsified Lasso, CluDL and EnCluDL, ob-
tained for ρ = 0.9. Desparsified Lasso cannot handle the extreme short-range correlation
that occurs within each predictive region and only identifies one feature in each. CluDL and
EnCluCL benefit from the clustering, as they identify all the features for every predictive
regions. We can also observe that EnCluDL improves upon CluDL thanks to the smoothing
effect produced by ensembling. Focusing on the EnCluDL solution, we can see that the
z-score of the upper left active region is a bit lower than for the other active regions. This is
due to the high correlation between the upper left and bottom right regions. Right: Summary
of the results of the second simulation. When the correlation increases the minimum z-score
within the correlated active regions decreases. The minimum z-score between the two un-
correlated regions is used as a control. We also plot the z-score of a random non-predictive
feature, we notice that due to the ensembling step of EnCluDL, the empirical confidence
intervals are much thinner than in Fig. 10. We observe that for a correlation lower than 0.8
the deviation is limited and it is possible to identify the two correlated predictive regions. For
a correlation larger than 0.9 the deviation becomes large and recovering the two correlated
regions becomes impossible.

the design matrix X, we first construct a 2D matrix M̃ by drawing p random normal1039

vectors of size n that are spatially smoothed with a 2D Gaussian filter (the smoothing is1040

only made in the feature space for each sample independently, the samples are not mixed1041

and remain independent). We flatten the vectors to go from M̃ of size n×H×H to M of1042

size n×p. The spatial smoothing enforces a 2D structure on the data. Then, we further1043

modify M such that (i) all the features of an active region are perfectly correlated and1044

(ii) two of the four active regions are correlated at a given value ρ ∈ (0, 1), the two1045

other active regions being unmodified (hence uncorrelated). The first transformation1046

aims at showing that the clustering is useful to handle the short-range correlation that1047

might be very high for fMRI data (see Sec. 7.4). The second transformation aims at1048
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testing whether EnCluDL can recover two correlated predictive regions; this is notably1049

desirable in the case of long-range correlation (e.g., two contralateral brain regions). The1050

two uncorrelated regions are used to provide control values. With these transformations1051

we obtain the design matrix X. In Sec. 7.4, the two active regions that are correlated1052

are located in the upper left corner and in the bottom right corner while the other two1053

are uncorrelated. Finally, we also set σε = 10, to approximately get SNRy = 4.1054

To check the ability of EnCluDL to identify two correlated regions, we compare1055

the smallest z-score of the features that belong to one of the correlated regions with the1056

smallest z-score of the features that belong to the uncorrelated active regions; we analyze1057

the results for several values of ρ ∈ (0, 1). To understand the effect of the clustering and1058

ensembling, we compare Desparsified Lasso, CluDL and EnCluDL solutions qualitatively.1059

Since the features that belong to the same active region are perfectly correlated, we1060

expect that Desparsified Lasso identifies only one feature per region at best. We also1061

report the z-score of a random non-predictive feature.1062

Second simulation results. In Fig. 11, we give the results for the second simulation.1063

Clustering turns out to be crucial to produce valid statistical inference solution in the1064

presence of extreme short-range correlation. Additionally, we show that when the corre-1065

lation of the two correlated active regions increases, their identification using EnCluDL1066

becomes harder. In this experiment, we observe that below a correlation of 0.8, En-1067

CluDL can identify accurately the two correlated regions. However, above a correlation1068

of 0.9, EnCluDL generally fails to recover the two correlated regions.1069

7.4 fMRI data structure1070

In Sec. 7.3, we have shown that one may encounter multicollinearity issues. It is thus1071

necessary to analyze the correlation structure of actual fMRI data.1072

In Fig. 12, we study the correlation observed in the HCP900 Emotion task data.1073

Considering correlation between random voxels, then neighboring voxels, we can see1074

that the correlation is much higher in the case of neighboring voxel. Notably, the median1075

correlation between two random voxels is 0.1 while the median correlation between two1076

neighboring voxels is above 0.8, and often larger than 0.9. We have shown in Sec. 7.3, that1077

Desparsified Lasso may fail to detect two features when they are so strongly correlated.1078

Correlation histograms after clustering the data as shown in Fig. 12. For example,1079

taking C = 500 clusters, the median correlation between two random clusters is 0.3 while1080

it is 0.7 for two neighboring clusters. Inter-cluster correlation always remains below 0.851081

and almost always below 0.8. In practice, we have shown in Sec. 7.3 that Desparsified1082

Lasso can handle scenarios where features have correlation lower than 0.8.1083

7.5 Estimating δ for which EnCluDL controls the δ-FWER1084

In Sec. 3.5, we recommend using δ, in regular brain imaging settings with (12):

δ0 =
(
p

2C

)1/3
,
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Figure 12: Data structure in HCP900 emotion task. Left: Correlation histogram of the
fMRI data at voxel level. The correlation between two random voxels is quite low, a typical
value being around 0.1. However, when looking at neighboring voxels, we observe that
the correlation is often higher then 0.9. This exhibits the short- and long-range correlation
structure but also suggests that raw Desparsified Lasso would not be adapted to this setting.
Right: Correlation histogram of the clustered data for C = 500. The correlation between
two random clusters is around 0.3, while the correlation between two neighboring clusters is
around 0.7 and almost always below 0.8. Then, thanks to clustering, highly correlated voxels
are aggregated into groups and Desparsified Lasso is adapted to this setting.

δ0 being a distance in voxel unit close to the average radius of the clusters used in En-1085

CluDL. However, when the setting is particularly favorable for inference, i.e., if log(n)/C1086

is large or σε is small, the choice of δ given by (12) may be over-optimistic and we might1087

need to correct this formula. We have found empirically that a suitable multiplicative1088

factor, denoted by τ > 0, that could be used to correct δ0 is given by:1089

τ = −45 log
(

σε
std(y)

) log(n)
C

, (22)

where σε is the standard deviation of the noise ε. In practice σε has to be estimated; in1090

the fMRI datasets we studied, estimates of σε
std(y) were close to 0.1. However, given the1091

heuristic derivation of this quantity and the uncertainty about the value of τ , we do not1092

recommend correcting δ0 with a factor lower than 1 as it could lead to a dramatic under1093

estimation of the valid δ. Then, the final formula to compute the δ such that δ-FWER1094
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control is ensured, is:1095

δ∗ = max(1, τ) δ0 . (23)

Note that the formula given by (12) and even (23) are not bullet proof but rather give1096

reasonable estimates of δ.1097

7.6 Cluster size analysis1098

In Sec. 3.5, we have proposed a formula to compute a valid spatial tolerance parameter1099

δ0. In Fig. 13, we show that δ0 is close but slightly lower than the average cluster radius.1100

Also, one can notice that taking a larger number of clusters, the size of the clusters is1101

smaller. As a consequence, the statistical control is valid for a lower spatial tolerance.1102

Finally, by looking at the shape of the distribution of the cluster radius, we observe that1103

there are only few large clusters.1104

In general δ0 is a suitable choice, however when the setting is particularly favorable1105

for inference, the mixing effect produced by ensembling might not be sufficient and voxels1106

far (further than δ0) from the support might be discovered. This effect can be explained1107

by the detection of large clusters that are overlapping the support and the null region.
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Figure 13: Comparing δ0 with the distribution of the cluster radius as a funtion of C.
By taking a larger number of clusters, we decrease the size of the clusters. The statistical
control is thus valid for a smaller spatial tolerance. Comparing the distribution of the cluster
radius with the recommended choice of spatial tolerance parameter δ0, we observe that δ0
is a bit lower than the empirical average cluster radius. Finally, we observe that few clusters
are much wider than the others, this may occasionally lead to false discoveries far from the
support in high SNR scenarios.

1108
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7.7 Illustrating spatial tolerance on real brain geometry1109

In Fig. 14, we display a brain pattern with spatial tolerance in the case of the HCP data.1110

Figure 14: Expanding HCP maps by 6
voxels. The black-colored voxels repre-
sent the positive weights of the reference
map constructed in Sec. 4.2. The red-
colored voxels are the δ-dilation of the pre-
vious map where δ = 6 voxels, i.e., the
tolerance we have taken in all experiments.
Then, δ-FWER controls the false discoveries
made outside of the colored voxels (see also
Sec. 3.1).

L R

1111

7.8 Statistical control under the global null with autocorrelated data1112

Experiment. In this experiment, we study how the different procedures control the1113

FWER when the data are temporally autocorrelated; hence violating the i.i.d. assump-1114

tion. Notably, this is the case if the data correspond to fMRI signal recordings of one1115

given subject during an acquisition. We consider data from the HCP900 resting-state1116

fMRI dataset described in Sec. 4.1 with full samples (n = 1200). The design matrix1117

X contains the 15-minutes fMRI signal records. As in Eklund et al. [2016], we con-1118

struct y such that it corresponds to two activity paradigms: block or event responses,1119

with several frequencies: 10s on/off, 20s on/off, 30s on/off, 2s-activation/6s-rest, 4s-1120

activation/8s-rest. Thus, y is temporally autocorrelated. In these simulations w∗ = 01121

so the δ-FWER and the classical FWER are identical. To better assess the impact of1122

correlation, we also generate y as an i.i.d. —uncorrelated— Bernoulli or standard Gaus-1123

sian random variable (here again w∗ = 0), breaking spurious correlations between X1124

and y. These two cases enable to check if the procedures still control the FWER at1125

the targeted nominal level on this dataset under the i.i.d. hypothesis. For each kind of1126

response, we repeat the experiment 100 times, using data from 100 different subjects.1127

Results. we now report the results of the experiment. In Fig. 15, we observe that for1128

all the fictitious block response paradigms, for every procedure, the empirical FWER ex-1129

ceeds the targeted nominal level (10%), as one would expect. This result is not surprising1130

since independence across samples is a key assumption for a valid statistical inference1131

with any of the four procedures. Notably, concerning EnCluDL, Desparsified Lasso needs1132

the i.i.d. hypothesis [Zhang and Zhang, 2014, van de Geer et al., 2014] to produce valid1133

confidence intervals or p-values. This assumption is not verified for the block or event1134
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response paradigms due to the temporal dependency in the data. However, when the1135

target y is i.i.d. —i.e., without temporal dependency (Bernoulli or Gaussian random1136

responses)— the FWER is controlled (except for Thr-SVR). Indeed, the model is no1137

longer confounded by the correlation structure underlying the data.
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Figure 15: FWER control under the global null with autocorrelated data. The results
of the experiment with correlated data under the global null, described in Sec. 7.8, show
that, when the data are temporally autocorrelated, all the procedures fail to control the
FWER. Indeed, for all the fictitious block response paradigms, the empirical FWER exceeds
the targeted nominal level of 10% for every procedure. This result is not surprising as the
procedures control the δ-FWER under the hypothesis that the samples are i.i.d.; this is not
the case for the block or event response paradigms. However, when the fictitious response
breaks the temporal dependency (binary or Gaussian random responses), the i.i.d. hypothesis
is met and the FWER is empirically well controlled except for the Thr-SVR procedure.

1138

7.9 Influence of the C/n ratio on the recovery property of EnCluDL1139

When using EnCluDL, the number C of clusters is an arbitrary parameter. We proposed1140

some default choice in Sec. 4.5, yet intuitively, C should adapt to the amount of data1141

available: larger samples size lead to better estimation, allowing refined localization,1142

hence higher C. In Fig. 16, we show on semi-simulated data that for C ∈ [n/2, n], C/n1143

being fixed, the precision-recall AUC on real data does not depend on n, suggesting to1144

chose C proportional to n.1145
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Figure 16: Influence of the C/n ratio on
the precision-recall AUC. The results of the
experiment described in Sec. 4.5 show that
the precision-recall AUC depends almost lin-
early on log(C/n) except when C is critically
low creating very wide clusters and deteriorat-
ing the precision-recall curve. This limit de-
pends on the physical properties of the prob-
lem; here, C should not be lower than 100.
Keeping this limit in mind, we advise taking
C ∈ [n/2, n] to recover most of the predictive
regions.
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7.10 Statistical control with known ground truth: additional plots1146

In this section, we provide additional experimental results to assess the detection accu-1147

racy of the multivariate estimators, to complement the results in Sec. 4.2. Fig. 17 shows1148

additional precision-recall curves, obtained for different values of n: these different set-1149

tings preserve the relative performance of the methods, while larger n results in better1150

curves. However, we do not recommend running such analysis with n < 100, since the1151

estimation problem is hard and statistical guarantees only hold in asymptotic regime.1152

Fig. 18 and Fig. 19 display the performance of the methods in terms of δ-FWER control1153

and precision-recall curves on semi-simulated data where y is binary. This induces a vio-1154

lation of the EnCluDL model that reduces its performance in terms of δ precision-recall.1155

Yet, unlike Ada-SVR, it still controls the δ-FWER accurately.1156

7.11 Face validity on HCP dataset1157

In Fig. 23, we plot the results for five tasks taken from the HCP dataset, besides of the1158

two described in Sec. 4.6. For all methods, the statistical maps are thresholded such that1159

the δ-FWER stays lower than 10% for δ = 12mm. Qualitatively, EnCluDL discovers1160

the most plausible patterns, Ada-SVR often makes dubious discoveries, patterns are1161

too wide and implausible, while the two other methods exhibit a very weak statistical1162

power. As discussed in the main person, Univ-OLS provides complementary results that1163

highlight marginal association between the data and the target.1164
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Figure 17: Precision-recall curves on semi-simulated data with continuous response
vector. The results of the experiment described in Sec. 4.2 show that EnCluDL has the best
performance in terms of precision-recall curve.
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Figure 18: Precision-recall curves on semi-simulated data with binary response vector.
The results of the experiment described in Sec. 4.2 with binary response show that Ada-SVR
and EncluDL outperform alternatives in terms of feature recovery. These results are quite
similar to the one presented in Fig. 6.
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Figure 19: δ-FWER control on semi-simulated data with binary response vector. The
results of the experiment described in Sec. 4.2 with binary response show that only Perm-SVR
and EnCluDL actually control the .

δ-FWER.
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Figure 20: δ-FWER control and precision-recall curves on semi-simulated data with
continuous response vector with Laplace noise. The results of the experiment described
in Sec. 4.2 with Laplace noise are similar to the one presented in Fig. 6 for Gaussian noise.
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Figure 21: δ-FWER control and precision-recall curves on semi-simulated data with
continuous response vector with Student noise. The results of the experiment described
in Sec. 4.2 with Student (with 5 degrees of freedom) noise are similar to the one presented
in Fig. 6 for Gaussian noise.
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Figure 22: δ-FWER control and precision-recall curves on semi-simulated data with
continuous response vector including a univariate method. These results show that the
FWER control guaranteed by Univ-OLS for univariate inference does not match the control
granted by EncluDL in the conditional paradigm. This is due the fact that the null hypotheses
being tested are not the same.
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Figure 18a: cf. Fig. 23 for description.

49



L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Thr-SVR L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Perm-SVR

L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Ada-SVR L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

EnCluDL

L R

z=20

L R

z=70 -20

-10

0

10

20L R

z=-20

Univ-OLS

(e) Motor Foot

L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

Thr-SVR L R

z=10

L R

z=50

L R

z=-20

Perm-SVR

L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

Ada-SVR L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

EnCluDL

L R

z=10

L R

z=50 -20

-10

0

10

20L R

z=-20

Univ-OLS

(f) Relational

Figure 18b: cf. Fig. 23 for description.
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Figure 23: Estimated predictive patterns on standard task fMRI dataset. Here, we plot
the results for five tasks of the experiment described in Sec. 4.6 thresholding the statistical
maps such that the δ-FWER stays lower than 10% for δ = 12mm. Qualitatively, EnCluDL
discovers the most plausible patterns, Ada-SVR often makes dubious discoveries, patterns
are too wide and implausible, while the two other methods exhibit a very weak statistical
power. As discussed before, Univ-OLS provides complementary results that display marginal
associations between voxel signals and the target. The results of emotion and gambling tasks
are available in Fig. 7.
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7.12 Prediction performance1165

In this section, we give results on the prediction performance of the methods. In Fig. 24,1166

we plot the results of the experiment described in Sec. 4.7. We notice that the classifica-1167

tion error rate is almost the same for SVR (the weight map of Thr-SVR and Perm-SVR)1168

and Ada-SVR, their prediction performance is slightly better than the one of EnCluDL.1169

Hence, we do not recommend using EncluDL to achieve state-of-the art prediction ac-1170

curacy, but only for statistical inference purpose.
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SOCIAL Figure 24: Prediction performance. Here we plot the
results for the experiment described in Sec. 4.7. The classi-
fication error rate is almost the same for SVR and Ada-SVR.
Their prediction performance is slightly better than the one
of EnCluDL. Hence, we do not recommend using EncluDL
to achieve state-of-the art prediction accuracy, but only for
statistical inference purpose. For all the task, "chance" clas-
sification error rate is 50%.
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